環境資源報告成果查詢系統

空氣品質改善整合性分析及空品區污染減量推動計畫(二)

中文摘要 本計畫主要工作包括整合全國空氣品質變化資料並進行成因分析及探討,推動高屏與竹苗空品區跨縣市協調減量管制及空品區涵容總量管制計畫,進行污染防制計畫書審核等考評相關行政及技術支援等。 近十年來我國國民生產毛額(GDP)成長41%;能源消費成24%,總車行里程成長16%,人口數成長3.4%,但全國排放量卻減少了18.6%,PSI>100也改善52.2%。顯見國內在維持既有經濟成長的需求下,透過各級環保單位的努力已經使污染排放及空氣品質獲得明顯改善。 在整合全國空氣品質變化資料並進行成因分析之主要成果如下: 一、每週製作週報表及每月製作月報表呈現100年空氣品質動態變化。民國100年全國一般測站PSI不良等級占1.4%,為歷年來最佳。 二、全國PM10濃度前5大測站出現在高屏及雲嘉南,雲嘉南近3年來PM10指標污染物所佔百分比有升高趨勢。 三、針對法定污染物時間序列趨勢分析,O3濃度呈雙尖峰季節變化,高屏空品區秋季9月之濃度為全國最高,且高屏空品區PM2.5濃度在每年12月至隔年1月濃度值為全台最高。 四、我國一般測站歷年臭氧(O3)八小時標準皆遠超過國內標準值60ppb,且呈現緩慢上升趨勢。各一般測站細懸浮微粒(PM2.5)日平均第八大值與年平均值濃度皆遠超過美國空氣品質標準。 五、比較美國與我國O3八小時值、O3小時值、PM10 24小時值及SO2小時值等四項空氣品質標準與符合標準之計算方法,並提出我國未來空氣品質標準之初步修訂方向。 六、秋冬季節卑南溪風速高於4m/s,濁水溪風速高於6m/s,容易引發河川揚塵並造成嚴重空品不良事件。透過11個重點測站污染玫瑰圖,初步解析民國98或99年測站污染濃度偏高之原因。 七、南部超級測站PM及其成份濃度均略高於北部,北部PM濃度高值多發生於3~4月,南部濃度高值多發生在秋冬季節。沙塵暴事件日主要污染來自較粗顆粒,較細懸浮微粒之成分物種濃度並未隨之升高。 八、光化測站52種VOCs成分以甲苯濃度最高,小港站乙烯濃度偏高乃受到鄰近石化工廠之影響;各地區光化測站均以都會型濃度值較高。VOCs成分臭氧光化潛勢MIR值分析結果顯示,99年萬華光化站臭氧發生潛勢為全國最高。高屏空品區100年9月份臭氧空品不良事件與當地VOCs異常排放有關。 協助高屏空品區進行10次陸空飛鷹巡查工作,通報30餘件疑似污染案例並告發9件。進行空品區O3及PM10管制策略研擬之模式模擬,提供環保署擬定相關管制策略之參考。 本計畫進行各縣市空氣污染防制計畫書之審核,並根據美國聯邦及南加州AQMP架構,撰寫完成「縣市空氣污染防制計畫書編寫及審查指引」。本計畫並編輯完成「空氣品質保護35年紀實」及「99年度空氣污染防制總檢討報告」。 完成空品區涵容總量110年目標年排放量推估,欲達成110年PSI>100目標,除推動情境一~三管制策略外,另需推動PM10逸散源,燃料油硫含量加嚴至0.3%,柴油車加裝濾煙器及de-NOx,並訂定各行業VOCs加嚴標準等額外管制措施。本計畫透過光化模式驗證西半部五大空品區O3及PM10空氣品質改善成效,情境三管制策略可顯著改善各空品區O3污染並達到民國105年空氣品質目標。PM10部分由於既有管制策略缺乏原生污染源進一步管制措施,欲達到各空品區PSI>100目標,需透過前述提及之額外管制措施方能達成。
中文關鍵字 空氣品質、管制策略、空氣品質管理計畫

基本資訊

專案計畫編號 EPA-100-FA11-03-D029 經費年度 100 計畫經費 9000 千元
專案開始日期 2011/01/28 專案結束日期 2011/12/31 專案主持人 潘一誠
主辦單位 空保處 承辦人 簡大詠 執行單位 鼎環工程顧問股份有限公司

成果下載

類型 檔名 檔案大小 說明
期末報告 EPA100FA1103D029.rar 87MB

Integrated analysis to improve air quality of nation-wide and air pollution control action for air b

英文摘要 The scope of this project includes: integrating air quality data, conducting the cause-effect analysis, overseeing both the emissions reduction coordination and the emissions control strategies between the Kao-Ping and Ju-Mao areas; reviewing the “State Implementation Plan (SIP) for County/City” and providing technical and administrative supports. Over the past decade, there are 41% growth in Taiwan's gross national product (GDP); 24% growth in energy consumption, 16% growth in the total vehicle kilometers traveled and 3.4% growth in population, however, the nation has reduced its pollution emissions by 18.6% with improvement in PSI> 100 by 52.2%. It is obvious that through the efforts of environmental agencies have made emissions reduction and air quality improvement possible with the economic growth at the same time. The major work of this project are listed as follows: 1. Organized weekly and monthly reports and prepared the air quality trend for year 2011. The ambient air quality monitor stations exhibited 1.4% PSI in bad days, which were the best ever in Taiwan. 2. The top five monitor stations of the highest PM10 concentrations are in the Kao-Pin and Yun-Chia-Nan areas. The percentage of pollution indicators as PM10 has increased in the Yun-Chia-Nan area over the past three years. 3. The time-series trend analysis for the regulatory pollutants showed that the O3 concentrations in the Kao-Pin area exhibited a double-peak pattern seasonally with the highest concentrations in September. The PM2.5 concentrations are the highest in the Kao-Pin area from December to next January each year. 4. The ambient air quality monitoring stations in Taiwan have all exceeded the 8-hour O3 standard 60 ppb with a slight upward trend. The 8th highest concentrations of PM2.5 have exceeded the U.S. 24-hour and annual standards. 5. Compared the methodologies in calculating 8-hour O3, 1-hour O3, 24-hr PM10, and 1-hour SO2 values for meeting the air quality standards in Taiwan and U.S and recommended the directions of setting future standards for Taiwan. 6. In the autumn and winter, the fugitive dust from the river beds is significant when the wind speed is higher than 4 m/s in the Bei-Nan area and for Joy-Swei area over 6 m/s. Through the pollution wind-rose analysis of the data from 11 key monitors, a preliminary assessment was made for the reasons of high monitored concentrations in 2009 and 2010. 7. According to our analysis regarding PM super monitor sites, the concentrations in the south are higher than the north; the high concentrations in the south are in the fall and winter. After our analysis of the PM components, only the coarse portion increased in the PM samples during the dust and sandstorm incidents. 8. Regarding the Photochemical Assessment Monitoring Stations; Toluene concentrations are the highest among 52 VOC species; Xiao Gang monitor has high ethylene concentrations affected by the nearby petrochemical industrial sources; the monitors in the metro area exhibited high O3 concentrations. Regarding the ozone photochemical potential – a product of the Maximum Incremental Reactivity (MIR) and ozone concentrations; the highest values are in the WanHwa photochemical assessment monitoring station; MIR was also provided to explain the high ozone days in September 2011 for the Kao-Ping area due to the areal VOC abnormal emissions. This project assisted the Land/Air Eagle Inspection; reported 30 plus pollution cases and enforced 9 cases. Our project also proposed three control strategies for ozone and six different control strategies for PM in order to assist Taiwan EPA to evaluate the effective control strategies. During the project, we finished the guidelines for the SIP submittals based on the content of the California South Coast Air Quality Management Plan and finished the “35-year Air Quality Protection Chronicle”,and “The Annual Report of Air Pollution Control in Taiwan(R.O.C)in 2010”. Air quality and emission reduction targets in each air basin area in 2021 have been made. In order to achieve the goals for year 2021, the specified strategies (I, II, III) proposed in this report will need to be implemented together with a PM10 fugitive source control, stricter sulfur (0.3%) content for diesel fuel, retrofit diesel vehicles with particle filters and deNOx devices, and control for the VOC source categories. This project verified the O3 and PM10 air quality improvement through photochemical model for the western part of the five air basins. Strategy III can significantly improve the O3 reduction and achieve the 2016 goal. However, for PM10, it will require all the control strategies and additional measures in order to achieve the PSI>100 goal since the emission sources lacking of original pollution control strategies at current.
英文關鍵字 air quality、control strategics、AQMP