環境資源報告成果查詢系統

台灣細懸浮微粒(PM2.5)成因分析與管制策略研擬

中文摘要 為瞭解台灣細懸浮微粒之成因並加以管制,本研究先收集文獻以釐清台灣細懸浮微粒組成與形成機制,並利用時間序列分析法與傅立葉級數法以探討污染物年變化趨勢。相關文獻指出PM2.5主要組成為NH4+、SO42-、NO3-、OC和EC,且以SO42-和OC所占比例最高。組成比例依地方而變,都市NH4+與NO3-濃度較郊區高,且NO3-亦與光化學反應程度有關而呈現顯著的南北濃度變化差異;nss-SO42-除了受到當地之汙染來源影響外,尚有可能來自於長程傳輸;在EC之部分,都市濃度明顯高於郊區,而OC與EC之比值則由北向南遞增。逐年濃度變化上,除了nss-SO42-從2002年至2005年有逐年上升之趨勢外,其餘物種無明顯之趨勢變化。季節變化之部分,NO3-皆於夏季出現占整體PM2.5濃度最低比例,而冬春季有較高之所占比例;ss-SO42-則除了屏東外,其餘地點均顯示ss-SO42-佔PM2.5濃度比例之高值發生於夏季;碳成分裡EC所占之比例無明顯季節變化,而OC則以夏季所占之比例最高。雲嘉南與高屏空品區之細懸浮微粒硫酸鹽與硝酸鹽均為(NH4)2SO4與NH4NO3成份,雖然其他空品區之硫酸鹽亦為(NH4)2SO4,但是硝酸鹽則尚有其他成份。 二次衍生有機氣膠的部分,以SOR來看,其值由北往南遞減,除了竹苗以及宜蘭空品區無資料外,所有的空品區之硫氧化率皆大於0.25,表示SO2的硫氧化作用旺盛,且可能經由長距離傳輸影響而產生之二次污染物;NOR的部分,除了高屏空品區小於0.1以外,其餘北部、中部、雲嘉南空品區皆大於0.1,表示微粒上之硝酸鹽除了當地產生污染物所轉化外,亦有可能來自其他較遠距離之轉化與傳輸。 為瞭解細懸浮微粒之年變化趨勢,本研究使用時間序列分析法與傅立葉級數法分析之,兩方法之分析結果幾乎相同,均顯示台灣大部分空品區污染物如PM2.5、PM10、NOx與SO2年變化率趨勢以下降為主,尤其以北部遞減趨勢較為明顯。三維網格模式CMAQ-TSSA模擬分析各空品區細懸浮微粒之質量濃度,結果均可符合模式模擬之性能評估規範。細懸浮微粒全台之平均成份組成中原生性、衍生性與水分之比例分別為35.2%、31.3%與33.5%;原生性中之主要來源為土壤揚塵等地殼成分,而衍生性成分中之主要成份分別為硫酸鹽、硝酸鹽與氨鹽,主要成份之組成與上述之周界量測結果相似,但是有機碳之差異較大,詳細原因仍待進一步分析。以CMAQ-TSSA方法模擬分析各空品區之點源、線源與面源對硫酸鹽、硝酸鹽與氨鹽之貢獻量,結果顯示硫酸鹽之貢獻源主要來自各空品區之點源,而北部空品區之面源亦為硫酸鹽之重要貢獻源。台灣地區西部硝酸鹽之主要貢獻源除竹苗空品區與雲嘉南空品區外為線源,而且大都是來自於所有空品區。各空品區氨鹽之主要貢獻源均是來自空品區本身排放之面源,貢獻比例幾乎均為50%以上,其次為上風處空品區面源,兩者之貢獻比例合計均達80以上。國內各項管制措施之成效可分別以排放量與周界空氣品質變化趨勢分析,在94年到100年期間,原生性PM2.5排放量中以線源之降低比例最大,而點源是略微上升,其中原生性PM2.5排放量於點源、線源與面源之平均年變化率分別為0.25%、-3.31%與-1.59%。至於SO2的排放量結果顯示線源之降低幅度最大,而點源與面源均為略微下降,即點源、線源與面源之SO2排放量於94年到100年之平均年變化率分別為-1.21%、-14.8%與-0.17%。不過線源之SO2排放量在總排放量中之比例小於2%,因而SO2總排放量之平均年變化率為-1.26%。NOx的部分,排放量變化亦以線源之降低比率最大,其中點源、線源與面源之平均年變化率分別為-0.14%、-4.19%與-0.71%。NMHC排放量之變化率顯示點源與線源均有顯著的下降,平均年變化率分別為-3.83%與-3.57%,可是面源之NMHC排放量卻是上升,平均年變化率為1.32%。故除了點源之原生性PM2.5與面源之NMHC排放量上升以外,於94年到100年間各類排放源之排放量均是為下降。
中文關鍵字 細懸浮微粒、貢獻比例、管制策略

基本資訊

專案計畫編號 EPA-101-FA11-03-A177 經費年度 101 計畫經費 3420 千元
專案開始日期 2012/03/21 專案結束日期 2013/03/20 專案主持人 吳義林
主辦單位 空保處 承辦人 郭孟芸 執行單位 財團法人成大研究發展基金會

成果下載

類型 檔名 檔案大小 說明
期末報告 EPA101FA1103A177(公開版).pdf 5MB

Contributions and Central Strategy for the Ambient Fine Particle in Taiwan

英文摘要 To understand the formation mechanism of fine particulate matters (PM2.5) and control them, this study reviews relevant papers and reports and investigates the trends in air pollutants by using Fourier decomposition and generalized site-specific trend model. Literature review indicates that sulfate, ammonium, nitrate, and organic carbon (OC) constitute the major parts of PM2.5. The composition varies from site to site. The concentration of ammonium and nitrate in urban areas is higher than those in rural areas. The observation of nitrate concentration, also varying with the level of photochemical reaction, reveals the difference of concentrations between northern and southern Taiwan. The annual concentration of non-sea salt sulfate increased from 2002 to 2005, but no significant changes of other species were observed. Seasonal variation shows that nitrate constitutes less in summer but higher in winter and spring. In summer, high peak of sea salt sulfate of PM2.5 is observed in Taiwan, except Pingtung. EC concentration has no significant seasonal variation, but OC does. The highest ration of OC is observed in summer. The ratios of ammonium to sulfate in equivalent are greater than 2 in all reviewed literatures, indicating the existence in (NH4)2SO4. However, the ratios of ammonium to (2*sulfate+nitrate) in equivalent are less than one, except for Yun-Chia-Nan and Kao-Ping air basins. Sulfur oxidation rate (SOR) increases from southern toward northern Taiwan. The SOR in all air basins, except Yilan, are larger than 0.25, indicating that strong sulfur oxidation occurs and may result from long-range transportation. Though nitrogen oxidation rate (NOR) in Kao-Ping air basin is less than 0.1, the NOR in North, Central, and Yun-Chia-Nan are larger than 0.1, revealing nitrates transfer from local pollutants and may be produced by long-range transformation or transportation. Fourier decomposition and generalized site-specific trend models are utilized to investigate the annul trends of PM2.5. The two approaches indicate similar results: the decrease in the concentration of PM2.5, PM10, NOx, and SO2 in almost every air basins, especially an enormous decrease in the north air basin. MM5 and Models-3/CMAQ are used to simulate the meteorological and air quality, respectively. The results of both simulations pass the requirements of evaluation guidelines for model performance. The fractions of primary, secondary components, and water in fine particles are 35.2%, 31.3%, and 33.5%, respectively. The major source for primary component is crustal element and the major species for secondary fine particles are sulfate, nitrate, and ammonium. Note that the results for organic carbon are not consistent with simulation results and literature reviews. The contributions from point, line, and area sources in each air basins to sulfate, nitrate, and ammonium of fine particles are studies by using CMAQ-TSSA. The results show that the major sources for sulfate are from the point sources, and the line source in the north air basin is also a significant source for sulfate. The sources for nitrate are generally from the line source in each air basin itself, except for Chu-Miao and Yun-Chia-Nan air basins, in western Taiwan area. The sources of ammonium are all from area sources in each air basin itself, with contribution greater than 50% for each air basin itself and greater than 80% for combination with upwind air basin. The effect of control measures in Taiwan is evaluated by the analysis of the relationship between air pollution emissions and ambient air quality. Primary PM2.5 emissions in line sources decrease largely from 2005 to 2011, while emissions from point sources increase slightly. The annual variation of primary PM2.5 emissions from point, line, and area sources vary by 0.25%, -3.31%, and -1.59%, respectively. The annual variation of line source SO2 emission decreases (-14.8%) largely, while there are slight decreases with emission categories of point and area sources (-1.21% and -0.17%, respectively). Since the line source SO2 counts little (2%) in total emissions, the total SO2 annual variation decreases slightly. The decreasing trend of line source NOx annual variation is consistent with the trend of line source SO2. The annual variation of SO2 from point, line, and area sources are -0.14%, -4.19%, and -0.71%, respectively. The decrease of NMHC emission from point and line sources is observed by -3.83% and -3.57%, while NMHC from area sources increases by +1.32%. In summary, variation of all emissions from every source decrease from 2005 to 2011, except for primary PM2.5 from point sources and NMHC from area sources.
英文關鍵字 Fine Particle、contribution、Control Strategy