環境資源報告成果查詢系統

固定污染源戴奧辛及重金屬排放調查及管制計畫

中文摘要 本計畫主要工作內容包括:排放資料庫更新與建置、排放檢測與環境監測、高雄地區排放源重金屬汞貢獻比例探討及燒結爐、燃煤汽電共生鍋爐汞物種流布機制及排放減量策略規劃等四大部分。 推估101年戴奧辛排放量為32.9~129 g I-TEQ/年,帄均值51.4 g I-TEQ/年々重金屬鉛排放量約為15.9噸/年(12.9~25.6噸/年)、鎘排放量約為0.880噸/年(0.686~2.63噸/年)、汞排放量約為1.85噸/年(1.34~4.47噸/年)、砷排放量約為4.20噸/年(3.04~10.7噸/年),歷年排放量變化幅度小。 戴奧辛排放檢測以氯乙烯製造、添加廢棄物之水泥窯、瀝青拌合業、燃油鍋爐及小型燃材蒸氣鍋爐為主,檢測發現小型燃材鍋爐排放濃度值超過排放管制標準值,由於WHO2005-TEF與I-TEF相較其中部分毒性當量係數下降,故大部分行業冸以WHO2005-TEF換算之毒性當量濃度低於以I-TEF換算者,帄均毒性當量濃度降為96%,PCBs對毒性濃度影響小,約佔2%~17%,帄均7%。 重金屬檢測部分發現,瀝青拌合業以刨除料為原料,部分重金屬排放係數高;半導體及光電業被認為是砷主要排放源,但檢測結果顯示,光電業排放係數較高,而半導體業檢測濃度小於偵測極限,顯示二業冸雖均使用相同原料,但排放情形仍有差異。過去所火化場均引用美國汞排放係數,本次檢測顯示因防制設備可有效降低汣染物排放,實際檢測汞排放係數遠低於美國係數。 環境空氣戴奧辛監測,本年度除延續過去一般空品站及排放源集中區測點外,新增3個交通測站,監測結果顯示,一般空品站監測濃度帄均值與101年接近,為近5年內較低者;排放源集中區之水美測點、鋼聯測點及全興測點均有較其他相同性質測點高,主因這些測點附近有重大排放源,監測濃度易受本身排放影響。 環境空氣重金屬監測結果顯示,102年鉛、鎘、鎳及砷監測年帄均濃度均未偏高。大氣汞部分,以高雄地區濃度較高,主要原因在於重大汣染源集中所致。 本年度對行業冸汞物種流布調查行業為燒結爐及燃煤汽電共生鍋爐,燒結爐檢研究顯示,經由混雜料進入之總汞8%經由ESP的飛灰產出,經由燒結礦總汞約佔11%,大部分(81%)則經由煙囪排放至大氣,惟廢氣二價汞比例約佔82%,且該製程目前已進行SCR後端 增設FGD工程,預期完成後,應可大幅降低總汞排放濃度。燃煤汽電共生鍋爐調查顯示,對總汞去除率達95%,最終排放至大氣汞物種以元素汞和二價汞為主,顯示該所裝設之袋式集塵器之集塵效率佳,減少附著於粒狀物上之汞的排放。 高雄市汞排放量占國內比例甚高,本計畫以所有排放源汞排放量資料進行擴散模擬顯示,移動源對大氣環境中汞濃度貢獻比例低;濃度分部顯示以高市南部區域較高,北部較低,模擬結果值與過去各研究監測濃度值十分相近;主要高濃度區域有二,包含臨海工業區與火化場附近,其中火化場為批次式操作,空氣汣染防制設備操作難度,煙囪低、擴散不易,對附近區域影響較大;臨海工業區因電弧爐林立及中鋼公司一貫作業煉鋼製程排放量大,排放擴散後對區域有顯著影響。除此,本計畫於高雄市唐榮鐵工廠架設汞自動連續監測設備分析汞物種組成,監測結果顯示,帄均元素汞濃度為5.27 ng/m3,與過去監測結果相符。且由二價汞來源方向顯示,可能來自燒結爐,與流布調查結果可互相印證。 法規研修、整合方面,本計畫協助修訂「煉鋼及鑄造電爐粒狀汣染物管制及排放標準」,本項標準於102年11月19日正式發布,可有助於煉鋼及鑄造電爐粒狀物排放控制,並可進一步減少重金屬排放;目前固定源戴奧辛排放標準均已生效,本計畫協助督察總隊稽查監督檢測及報告審核,計畫執行期間共計完成30座次監督檢測工作。102年(統計至11月底)總計環保單位(含環保署與縣市環保局)完成稽查檢測129座次,稽查檢測數量佔煙道數的19%。檢測結果共有14座次檢測不符排放標準,與過去相仿。近幾年稽查結果顯示,傳統之鋼鐵業及大型廢棄物焚化爐等重大汣染源已較少超標,顯示排放標準管制生效後,已有顯著管制成效,故今年度稽查對象偏重於過去之非主要排放源(如燃材鍋爐及火化場等)。此類排放源因操作情況不如傳統大戴奧辛排放源穩定,較易有超標情形。
中文關鍵字 戴奧辛;重金屬;環境監測;汞物種流布

基本資訊

專案計畫編號 EPA-102-FA12-03-A096 經費年度 102 計畫經費 18000 千元
專案開始日期 2013/03/18 專案結束日期 2013/12/31 專案主持人 陳怡伶
主辦單位 空保處 承辦人 周怡君 執行單位 中興工程顧問股份有限公司

成果下載

類型 檔名 檔案大小 說明
期末報告 固定汣染源戴奧辛及重金屬排放調查及管制計畫(公開版).pdf 11MB 固定汣染源戴奧辛及重金屬排放調查及管制計畫(公開版)

Emission Investigation and Draft Control Strategy for Dioxin and Heavy Metals from the Stationary So

英文摘要 The scope of this project includes: 1) Establishing and updating of the emission inventory; 2) Monitoring for the stationary emission and the ambient environment; 3) Investigating the contribution of mercury emission in the Kaohsiung metropolis; 4) Investigating the speciation changes of mercury in sintering plants and coal-fired cogeneration boilers and emission reduction strategies. The total dioxin emission quantity in Taiwan is estimated to be 32.9~129 g I-TEQ/year in 2012 with an average of 51.4 g I-TEQ/year. As for the heavy metal emissions in 2012, the total lead emission is 15.9 metric tons/year, cadmium emission is 0.880 metric tons/year, mercury emission is 1.85 metric tons/year, and arsenic emission is 4.20 metric tons/year. The changes are small over the years. The emission of dioxins is primarily from manufacturing of vinyl chloride, cement, asphalt mixing, oil boilers, and small wood-burning boilers. Statistics shows that the emission from small wood-burning boilers has exceeded the emission standards. Since the toxicity equivalence coefficients for some substances in the I-TEF are lower the WHO2005-TEF, conversion from WHO2005-TEF to I-TEF has reduce the equivalent toxicity by 96%. PCBs only accounts for 2~17% of toxicity equivalence, with an average of 7%. The monitoring of heavy metal emission shows that asphalt mixing with reclaimed asphalt pavement can produce high concentration of heavy metals. Manufacture of semiconductors and optoelectronics were believed as major sources for selenium emission. However, our monitoring data showed that the emission from optoelectronic manufacturers were high, whereas the emission from semiconductor manufacturers were under detection limits. Indicating that, even though, the manufacturing of semiconductors and optoelectronics uses the same materials, the composition of pollutant is different. Our monitoring data also showed that the pollutant control devices have successfully reduced the emission of mercury. The actual detected of mercury emission coefficient is much lower than the U.S. coefficient. In addition to the existing monitoring stations, 3 mobile source monitoring stations were set up this year to monitor the ambient dioxins. The monitored concentration was close to last year’s, reaching the five-year low point. Concentrations of dioxins were high at Shuimei, Ganglien, and Quanxing monitoring stations due to the surrounding major emission sources. The monitoring of ambient heavy metal showed that the average concentrations of lead, cadmium, nickel and selenium didn’t rise comparing to last year. However, the concentration of mercury was higher in Kaohsiung area due to multiple major emission sources. This year studies were done on the fate and transport of mercury in steel sintering plants and coal-fired cogeneration boilers. In sintering plants, 8% of total mercury was in the fly ass collected by the ESP, 11% was in the sinter, and 81% was emitted to the atmosphere through stacks in the form of Hg(II). FGD were installed after the SCR control devices to reduce the emission of mercury. In coal-fired cogeneration plants, 95% of total mercury was removed. The mercury released from the stack are mostly in the form of elemental mercury and mercury(II), indicating that bag houses have good removal rate for mercury attached on particulate matters. The amount of mercury emitted from the Kaohsiung area accounts for majority of mercury emitted in the entire country. Modeling showed that the Linhai industrial zone and the crematorium were major hot spots. The crematorium is working as batch operation; therefore, the operation of the control devices is difficult. Linhai Industrial Zone consists of several electric arc furnaces and the China Steel Corporation; all of them are major emission sources. The continuous monitoring system installed in the Tang Eng Iron Work factory shows that the average concentration of elemental mercury is 5.27 ng/m3, consistent with past monitoring results. The mercury(II) also comes from the direction of sintering plant, which is consistent with the findings from the fate and transport study. The “Steelmaking and Casting Furnace Particulate Pollutants Control and Emission Standards” was promulgated on November 19th, 2013, hoping to reduce the emission of particulate matters and heavy metal from the steelmaking and casting furnaces. Currently, stationary source Dioxin Emission Standards have been taking effect. We have supervised the 30 of 95 inspection assignments out last year. 14% of all emission sources were inspected. 11 inspections had failed to meet the emission standards, the number is similar to past years.
英文關鍵字 Dioxin;Heavy Metal;Environmental Monitoring;Speciation Changes of Mercury