環境資源報告成果查詢系統

中部及雲嘉南空品區污染減量管制計畫

中文摘要 台灣本島地區空氣品質,99年有中部、雲嘉南及高屏空品區臭氧、懸浮微粒為三級防制區,不符合空氣品質。103年則僅有高屏空品區臭氧、雲嘉南及高屏空品區懸浮微粒為三級防制區,較99年已有改善。另在細懸浮微粒(PM2.5)方面,103年全國年平均濃度為23.5μg/m3,西部地區各縣市年平均濃度皆高於空氣品質標準15μg/m3,為新興挑戰。 本計畫目的為提昇中部及雲嘉南空氣品質,工作項目包含重點污染源熱區管制、中部雲嘉南減量行動及固定污染源標準研修,工作成果重點摘要如下: 一、重點污染源熱區管制 六輕鄰近測站空品指標近年逐步改善。環保署台西光化站十六風向污染物年平均值顯示,來自六輕方向丙烯、苯近年(96~103年)改善60%及35%。似與VOCs標準之落實,燃燒塔不得處理正常操作下排放廢氣有關。 六輕乙烯產量與雲嘉南空品區O3事件日時序趨勢分析顯示,六輕產量逐期增加,自六輕一期89年至四期96年間,O3事件日由平均每年5日增為14日,與產量增加趨勢相近。96年起產量已穩定,O3事件日由96年14日降為104年之1日,似已與六輕產量脫勾。此外,六輕原油煉量與環保署台西站SO2年平均值(來自六輕風向),自97年起也有產量與空品脫勾現象,同前述改善原因。 歲修時段使用燃燒塔雖符合法規規定,但仍有改善空間。以塑化公司OL3廠103年底歲修時段為例,發生8/15~8/16忠明站高濃度丙烯56.3ppbC、8/21鄰近國小陳情、9/27~9/30雲嘉南O3事件日等3事件,推測皆與其有關。已要求業者提出優化燃燒塔歲修操作之標準作業程序,以精進管制作業。 六輕鄰近測站空品指標異常數據似與歲修時段使用燃燒塔有關。VOCs標準中,要求燃燒塔每年使用事件達30日者,須提送減量計畫書,建議審查要求業者提出優化燃燒塔歲修操作之標準作業程序。在設備元件方面,為強化設備元件檢測數據代表性,已於六輕推動元件檢測自動記錄與傳輸。相關經驗可以提報環檢所,以評估擴大辦理可行性。在儲槽方面,六輕因應環評承諾有多項優於法規之作法,也可提供其它石化業者參考辦理。 指定污染熱區(高雄石化業)管制專案:高屏空品區O3事件日由96年之平均每站23日降為103年之10日,除與六輕管制有關外,另有關鍵污染源。為改善高屏為O3二級防制區,參考六輕管制經驗,透過風向、製程原料指紋、燃燒塔廢氣量、事件日時空變化、污染源正軌跡機率分析等工具,顯示台聚公司及中油新三輕為重大污染源。在其104年初完成燃燒塔廢氣回收後,104年O3事件日已降為4日,低於二級防制區門檻之8日。 臺中港區管制專案:固定源管制方面,推動加嚴標準,要求臺中發電廠、中龍鋼鐵及倉儲業者持續改善;移動源柴油貨車及船舶管制方面,推動加裝濾煙器及進港減速等方案;逸散源管制方面,藉由落實逸散管辦、及港區評鑑以改善PM10空氣品質。 鄰近臺中港區沙鹿站PM2.5濃度,與西屯站配對比較顯示,沙鹿站濃度似受到99年、102年新增之局部污染源影響,約各4g/m3,惟原因須進一步確認。為進一步減量,建議可於臺中港鄰近地區推動能資源整合以提高能源使用效率並降低污染排放。並可參考南加州「有害空氣污染物暴露研究」,建置健康風險地圖,以強化移動源管制必要性之說帖。 二、中部雲嘉南減量行動 中部空品區自103年起PM10改善為二級防制區,分析改善原因,並複製成功經驗至雲嘉南空品區。分析顯示,臺中市沙鹿站受臺中港區鄰近堆置場逸散影響、彰化縣二林站受中科二林園區施工影響、南投縣南投站受河川疏濬衍生逸散排放影響。改善原因與環保署訂定逸散管辦,並與環保局合作推動港區、重大工程及疏濬工程等評鑑作業有關。雲嘉南空品區指標測站分別為崙背、朴子、嘉義、新營等站,初步判定PM10高值似與濁水溪揚塵、旱田、露天燃燒及營建工程有關,須持續精進。 探討中部、雲嘉南空品區PM2.5前驅物的空氣品質時空變化,近10年(94~103年)SO2年平均值約改善23%、24%;NO2約改善20%、17%;NMHC約改善25%、21%;全國5個測站氨氣濃度,以崙背站最高,約為新莊站5倍,且無明顯改善趨勢。SO2熱區為中彰沿海,固定源似為主要污染源、NO2及NMHC熱區為中彰投內陸,移動源似為主要污染源。SO2減量行動為源頭管制(乾淨燃料)、管末處理(加嚴標準)及能資整合;NO2及NMHC則需搭配移動源管制;NH3來自下水道及畜牧業等排放,需加速下水道建設、環保署水保處生質能厭氧消化政策。 三、固定污染源標準研修 本年度協助環保署修正水泥業標準,除檢討傳統污染物PSN外,亦納入汞、氟等物種。考量現行污染防制及燃燒控制技術成熟、國內業者已有改善實績,新設污染源PSN標準調整為20g/Nm3、20ppm及200ppm。另考量旋窯排放汞為聯合國水俣公約主要管制對象、氟易致使附近農作物受損,增訂汞、氟標準為15μg/Nm3及1mg/Nm3。 VOCs標準落實後,O3事件日已有明顯改善,但VOCs管制對於PM2.5之影響,則待進一步探討。於101~103年訂定之鋼鐵業、固定源、玻璃業及電力設施加嚴標準將於近期陸續生效,污染減量及PM2.5空品改善需進一步追蹤。 近年來由於燃料價格的轉變,桃園縣染整業等業者燃油鍋爐改使用燃煤(廢木材)鍋爐,造成環保問題,工業局及能源局擬藉由能資整合及生質能政策引導業者轉型。另清淨空氣行動計畫中,推動飯店使用天然氣鍋爐政策,有益於降低都會區污染排放。上述小型供熱鍋爐適用固定污染源空氣污染物排放標準。建議可透過跨部會的平台溝通,檢討修正排放標準,加速政策之推動。
中文關鍵字 空氣品質、空污減量、六輕離島工業區、固定污染源、排放標準

基本資訊

專案計畫編號 EPA-104-FA12-03-A110 經費年度 104 計畫經費 13922 千元
專案開始日期 2015/03/18 專案結束日期 2015/12/31 專案主持人 郭子豪
主辦單位 空保處 承辦人 戴忠良 執行單位 中興工程顧問股份有限公司

成果下載

類型 檔名 檔案大小 說明
期末報告 期末報告EPA-104-FA12-03-A110.pdf 29MB

The Implementation Plan to Improve Air Quality in the Central and Yun-Chia-Nan air basin

英文摘要 In 2010 every cities and counties in Central and Yun-Chia-Nan Air Quality Zones were rated as Class 2 for ozone and particulate matters. In 2014, only the Kaohsiung and Pingtung Air quality zone were rated as Class 3 for ozone quality; Kaohsiung, Pingtung, , Yunlin, Chiayi, and Tainan were rated as Class 3 for particulate matters, which has improved significantly since 2000. However, for all cities and counties, the annual average concentration of PM2.5 was 23.5μg/m3, with every cities and counties in western Taiwan surpassing the national standard of 15μg/m3. This project has three main tasks: 1. Emission control in emission hot spots. 2. Reduce emission in air quality zones. 2. Revise emission standards for major stationary sources. Each task will be explained further below. I. Emission control in emission hot spots The air quality monitoring results around the Sixth Naphtha Cracking Plant is gradually improving over the years. The propylene and benzene concentration was reduced by 60% and 35% respectively since 2007, due to the implementation of the new VOCs regulations and reduction of flaring. From 2000 to 2007, the non-attainment days of ozone in Yun-Chia-Nan Air Quality Zones increased along with the increase of ethylene production. After 2007, with the implementation of various control strategies, the non-attainment days had decreased from 16 days in 2007 to 1 day on 2015 regardless of further increase in ethylene production. The SO2 concentration detected in Taixi monitoring station also displayed decreasing patterns since 2007. Even though, the regulations allow the usage of flares during annual maintenance, the annual maintenance of the FPC Company OL3 factory in 2014 resulted several air pollution incidents. On Aug. 15th and 16th, the propylene concentration reached 56.3ppbC in Chung-Ming monitoring station. On Aug. 21st, complaints was filled by the nearby elementary school. On Sept. 27th and 30th, the O3 exceeded the standard. The EPA had requested the company to improve its flare tower operation procedures during the maintenance period. The VOCs regulations demands a reduction project from those who uses flare towers for more than 30 days. Reduction measures were also taken regarding to components and storage tanks. As for the management of petrochemical hot spot in Kaohsiung and Pingtung, the number of ozone non-attainment day has decreased from 23 days in 2007 to 10 days in 2014. Monitoring and modeling data indicates that the USI facory and the CPC’s Third Naphtha Cracking are the major sources. After implementing flue gas recovery system in flares, only 4 non-attainment days for ozone was observed as of December 2015; below the 8 day threshold for Class 2 air quality zone. To control the emission in Taichung Port Area, regulations were strengthened to reduce emissions from Taichung Power Plant, Dragon Steel Company, and the logistic companies. To reduce mobile source emissions, filters were applied to trucks and ships along with reducing speed limit while entering the port area. Measure were also taken to reduce fugitive particulate emissions. The PM2.5 concentration in Shalu are around 4 in 2010 and 2013. To further reduce emission, cogeneration and distribution of heat and energy in Taichung Port Area is recommended. Further reduction on mobile sources is also recommended. II. Emission reduction in air quality zones The Central Air Quality Zone has been upgraded to Class 2 for PM10 improvements due to regulations in storage fields, construction sites, and river dredging projects. Same strategies will be implemented in Yun-Chia-Nan Air Qaulity Zone to improve PM10 concentration there. The precursors of PM2.5 have seen reduction over the last decade(2005 to 2014). SO2 concentration was reduced by 23% and 24% in Central and Yun-Chia-Nan Air Quality Zones respectively. NO2 was reduced by 20% and 17%; NMHC was reduced by 25% and 21%. Ammonia concentration in Lunbei was the highest among the 5 stations in Taiwan; it hasn’t shown any significant reduction over the years. NH3 mainly comes from sewers and livestock. Construction of sewer collection system and anaerobic digesters is advised. III. The Revision of Stationary Sources Emission Standards This year the emission standards for cement factories is being revised. Other than strengthening the traditional PSN standards, mercury and fluoride standards were also implemented. After the implementation of the new VOCs standards, the number of non-attainment days for ozone has significantly decreased. However, its effect on PM2.5 concentration is still unclear; further investigation is still required. Further investigation is also required to understand the effects of the newly implemented emission standards for steel refineries, glass manufactures, electricity industries, and stationary sources on the PM2.5 concentrations.
英文關鍵字 air quality、air pollution reduction、the No.6 Naphtha Cracker off-shore island industrial zone、Stationary Source、Emission Standard