環境資源報告成果查詢系統

利用鋼鐵廠飛灰磁選分離回收製成鋅鎳錳磁氧鐵礦觸媒及工程放大之研發

中文摘要 近年來,台灣地區的鋼鐵業每年產出約21萬公噸之飛灰有害事業廢棄物,具有危害環境及人體健康之潛在毒性。在不鏽鋼/碳鋼煉鋼廠中的飛灰之主要成分微/奈米ZnFe2O4/NiFe2O4/MnFe2O4觸媒,很容易經磁選/高能研磨程序分離而純化,作為分解CO2之奈米級還原性觸媒。二氧化碳是目前主要之暖化潛勢溫室氣體(約占50~60%),尤其是鋼鐵業、火力發電廠及石化業幾乎占大部分之排放量。微/奈米ZnFe2O4/NiFe2O4/MnFe2O4觸媒,加以經磁選分離出73%,再經過精細分選/高能研磨後可以得到15-20%之奈米ZnFe2O4/NiFe2O4/MnFe2O4觸媒混合物。經由XRPD鑑定其結晶為尖晶石結構(spinel),由TEM及FE-SEM照片分析可得知奈米鎳/鋅磁氧鐵礦粒徑約為35-45 nm。觸媒經氫氣還原可得缺氧態之ZnFe2O4/NiFe2O4/MnFe2O4觸媒,在數分鐘分解CO2過程中,CO2之兩個氧很容易被抓出而形成碳微粒,沉積在觸媒表面。經磁選後之鋼鐵廠飛灰N2等溫吸-脫附曲線為Type IV之中孔尺度孔洞材料,比表面積為46 m2/g。經磁選後之鋼鐵廠飛灰和鋅鐵氧磁石隨著溫度之增加CO2分解及生成CH4反應後,粒徑會有明顯之增加。由實驗室水熱法製備之鎳/鋅/錳磁氧鐵礦對CO2之分解選擇率都非常好,皆可到達>99%,而磁選後鋼鐵廠飛灰僅有88%。鎳磁氧鐵礦之CH4產率為最高可達99.8%;鋅磁氧鐵礦次之為99.6%;而錳磁氧鐵礦也可達到89.6%;但磁選後鋼鐵廠飛灰產率最低僅為22.3%。在鋼鐵廠飛灰及鋅/鎳/錳磁氧鐵礦進行CO2分解甲烷化反應,可得皆為一階方程式。於300、350及400℃下進行,求得活化能分別為279、172、117及139 kJ/mol、ΔH = -252 kJ/mol及△S分別為244、249及252 J/mol K。由理論值計算結果,H2或碳微粒直接應用於鍋爐燃料的方式,相對於從CO2到CH4的總能源轉換率確實是較佳,實際高耗能之產業煙道尾氣氣體成分複雜,故CO2純度或含量約在15-20%,需再經過壓變吸附法分離單元(PSA)純化後,再進入奈米ZnFe2O4/NiFe2O4/MnFe2O4觸媒固定床或流體化床反應系統,並搭配現有之空氣污染防治設備(APCD)處理流程。奈米ZnFe2O4/NiFe2O4/MnFe2O4觸媒在中溫反應(573-673 K)及1 atm條件下分解CO2,形成C微粒與O2之反應機制,達成CO2減量之目的;而C再進一步與H2甲烷化反應(methanation)產生有用能源甲烷(CH4)並予以回收再利用,供應實廠廠區能源需要。同時完成工程成本估算可得營運盈餘約166,674 NT$/ton飛灰。另外,以處理鋼鐵廠飛灰之回收率及純化過程損失保守估計為1%,總計共可以增加營收約200萬/天之優勢,相當具有實業應用之潛力及價值。
中文關鍵字 奈米鋅/鎳/錳磁氧鐵礦觸媒、鋼鐵廠飛灰回收、催化分解二氧化碳

基本資訊

專案計畫編號 EPA-104-U1-U1-04-002 經費年度 104 計畫經費 1250 千元
專案開始日期 2015/04/25 專案結束日期 2015/11/30 專案主持人 林錕松
主辦單位 永續發展室(停用) 承辦人 林燕柔 執行單位 元智大學

成果下載

類型 檔名 檔案大小 說明
期末報告 EPA-104-U1-U1-04-002 (摘要版).pdf 0MB
英文摘要 Recently, Over 0.21 million tons per year (TPY) of flyash hazardous wastes were produced from steel industries in Taiwan having high risk for enviroment or human beings. In stainless stell/carbon steel manufacturing plants, the ZnFe2O4/NiFe2O4/MnFe2O4 are major materials and can be easily speparated/purified using magnetic method or ball mill unit. Carbon dioxide is the main greenhouse gas of 50~60% with global warming potential (GWP) and plays a role in the greenhouse effect especially for the CO2 emission from steel companies, powder generation plants, and petrochemical industries. Experimentally, ZnFe2O4/NiFe2O4/MnFe2O4 catalysts were speparated from flyashes with the efficiency of 73% and further purified to obtain nanocatalysts with the efficiency of 15-20% using magnetic separation or ball mill methods. The XRD patterns indicated the ZnFe2O4/NiFe2O4/MnFe2O4 catalysts are spinel structure. Based on FE-SEM and TEM micrographs, the particle size ranged of 35-45 nm of ZnFe2O4/NiFe2O4/MnFe2O4 nanocatalysts were found. Decomposition of CO2 into carbon and oxygen was carried out within few minutes when it comes into contact with oxygen deficient nanocatalysts through incorporation of oxygen into catalysts. The Type IV mesoporous nanomaterials with a specific surface area of 46 m2/g for magnetic selection flyashes using nitrogen adsorption isotherms. Flyashes and ZnFe2O4/NiFe2O4/MnFe2O4 nanocatalysts increase the CO2 decomposition efficiencies and aprticle size with increasing reaction temperatures. The CO2 decomposition effiencies of all the ferrite nanocatalysts synthesized by hydrothermal method are >99% but magnetic selection flyashes are only 88%. CO2 yields of NiFe2O4/ZnFe2O4/MnFe2O4 and flyashes are 99.8, 99.6, 89.6, and 22.3%, respectively. The first-order reaction and activation energy of CO2 decomposition NiFe2O4/ZnFe2O4/MnFe2O4 and flyashes are 117, 139, 172, and 279 kJ/mol, respectively. In addition, the ΔH = -252 kJ/mol and △S = 244, 249, and 252 J/mol K respectively at 300, 350, and 400℃ for CO2 decomposition. Based on the theoretical calculation, the energy efficiency of the route from CO2 to CH4 is higher compared with the one from C or H2 combustion directly. The in-situ complicated offgases contains 15-20% CO2, it needs to be purified by pressure swing adsorption (PSA) before decomposition reaction in fixed-bed or fluidized-bed catalytic reactors at 300-350℃ and 1 atm. When CO2 contacts with oxygen deficient ferrites, decomposition of CO2 occurs by the incorporation of oxygen anions in the vacancies in the oxygen deficient ferrite thereby restoring the ferrite to stoichiometry at 1 atm and 573-673 K. At the same time, electrons are donated from the oxygen deficient ferrite to produce carbon or carbon monoxide. Next, the deposited carbon on the surface converts into methane (methanation) upon treatment with H2 (hydrogenation) while regenerating used ferrite to oxygen deficient ferrite. Decomposition of CO2, moreover, recovery of valuable methane using heat energy of offgas produced from steel companies, powder generation plants, and petrochemical industries is an appealing alternative for energy recovery. Moreover, the simulated calculation of scale-up 20 TPD flyash recycling and CO2 utility plant were perfomed with benefit of 166,674 NT$/ton flyash and extra 2 million NT$/day of nanocatalysts that shows highly potential for industrial application in the near future.
英文關鍵字 Zn/Ni/Mn ferrite nanocatalyst, Steel plant flyash recycling, CO2 catalytic decomposition.