環境資源報告成果查詢系統

廢鋰鐵電池中正、負極材料資源回收之研究

中文摘要 本計畫主要是進行廢鋰鐵電池中正、負極材料之有價金屬含量分析與鋰、鋁、鐵、銅資源回收研究,本計畫目前研究成果顯示,廢鋰鐵電池正極材料之三成份分析實驗結果可知,廢鋰鐵電池正極材料之平均水分、灰份與為可燃份分別為 0.008%、99.777%與0.222%,另正極材料中之鋰、鋁、鐵金屬全含量依序為29,566mg/kg、131,555mg/kg、254,667mg/kg。另廢鋰鐵電池負極材料之平均水分、灰份與為可燃份分別為 0.01%、99.222%與0.768%,而負極材料之銅金屬全含量為409,999mg/kg。 根據本計畫浸漬溶蝕實驗結果得知,廢鋰鐵電池正極材料之最佳鋰、鋁、鐵浸漬條件為: 27℃、1N 硫酸、3g/50ml,浸漬0.75小時後,其鋰、鋁、鐵金屬之浸漬回收率分別為100%、2.57%、100%,此條件下可先初步將97.43%之金屬鋁分離回收。另再將最佳含鋰、鋁、鐵浸漬液利用氨水將其 pH 值調整至7時,其鋁與鐵沉澱回收率皆達100%,而約77%鋰金屬留存於濾液體中,此含鋰濾液經70℃、5hr進行晶析純化,可獲得硫酸鋰晶析產品,其純度約為94.8%。 另為回收殘留之23%鋰金屬,本計畫再將鋰、鋁、鐵沉澱物進行27℃、1N 硫酸、3g/50ml,浸漬1小時之浸漬後,再以氨水將此二次浸漬液之pH 值調整至7,以沉澱獲得含鐵為主之鐵產品,另此二次含鋰浸漬液,再以晶析方式回收剩餘20%之鋰金屬,亦即3%之鋰、2.57%之鋁與100%之鐵會留存於鐵產品中。 另本計畫所獲得廢鋰鐵電池負極材料之最佳銅浸漬條件為: 70℃、1N硫酸添加10倍H2O2理論當量添加量、1g/50ml,浸漬0.5小時後,其銅金屬之浸漬回收率可達100%,經過濾後浸漬殘渣為高純度碳材質。另此最佳含銅浸漬液經室溫、電流密度 50(A/m2)、電解3hr後,可獲得電解回收率達100%之銅電解產物。另亦可將此最佳含銅浸漬液以 70℃、5hr晶析純化後,以獲得硫酸銅晶析產品,其純度約為80%。
中文關鍵字 廢棄物、電池、鋰、鐵、資源、回收

基本資訊

專案計畫編號 EPA-105-XB01 經費年度 105 計畫經費 900 千元
專案開始日期 2016/01/01 專案結束日期 2016/11/30 專案主持人 李清華
主辦單位 回收基管會 承辦人 廖淑秋 執行單位 大葉大學

成果下載

類型 檔名 檔案大小 說明
期末報告 EPA-105- XB01-廢鋰電池中正、負極材料資源回收之研究-定稿.pdf 4MB
英文摘要 This study focuses on the negative and positive components of scrap lithium-iron battery for material analysis and recycling of lithium, aluminum, iron, and copper. According to results of component analysis, that the waste lithium-iron battery positive electrode and the negative electrode material are both comprised of the major inorganic substances. The full metal contents were determined as 29,566 mg/kg, 131,555mg/kg and 254,667mg/kg, lithium, aluminum and iron respectively. The negative electrode comprised of 409,999 mg/kg copper metal. After leaching studies of the positive electrode material, the optimum leaching conditions were determined as: 1N sulfuric acid at a solid-liquid ratio 3g / 50ml, for 0.75 hr at 27 ℃. Under these conditions, the lithium, iron and aluminum recovery rates were 100%, 100% and 2.57% respectively. When the leaching solution pH was adjusted to a pH value of 7.00, the precipitation of iron and aluminum recoveries were up 100%, while about 77% of the lithium metal was obtained after filtration. This filtration residue was purified by crystallization at 70 ℃ for 5hr to obtain lithium sulfate crystallization products with a purity of 94.8%. In order to recover 23% of the lithium metal remained in the lithium (Li), aluminum (Al), iron (Fe) precipitate, this precipitate was leached for 1 hour in 1N sulfuric acid leaching solution at a 3g/50ml solid/liquid ratio at 27℃. After leaching, the iron-based product remaining contained 3% Li, 2.57% Al, and 100% Fe. The leachate was subjected to pH adjustment with ammonia water, followed by crystallization. Successfully, 20% of the lithium metal was recovered. The optimum leaching conditions for the negative electrode material were as follows: 10 times the theoretical amount of H2O2 added to 1N sulfuric acid, liquid ratio 1g/50mL, 70℃ and 0.5hr. Under these conditions, leaching copper metal recovery was up to 100%. This copper leaching solution was under went electrolysis at a current density of 50 (A/m2) and room temperature for 3hr. A 100% electrolytic copper recovery rate was achieved. Alternative, this copper leaching solution can be crystallized for 5hr at 70℃ to obtain copper sulfate crystallization products with a purity of 80%.
英文關鍵字 waste, batteries, lithium, ion, resource, recovery