環境資源報告成果查詢系統

移動污染源排放總量推估及管制專案工作計畫

中文摘要 移動污染源排放總量推估計畫工作執行重點,以檢討更新移動污染源排放量推估模式之參數來源及推估方法,完成推估全國104及105年度移動污染源各主要空氣污染物排放總量。移動源排放量模式推估過程分別就模式推估所需之各項參數進行檢視及重新統計,包含計算排放係數各車種之零里程劣化率,計算活動強度使用燃油法推估之正確性,期末報告已完成推估全國104年及105年度移動污染源各主要空氣污染物。移動污染源對空氣品質之影響分析,運用光化測站資料與PMF估算移動污染來源之貢獻量,探討移動源與環境PM2.5濃度變化之關係。也透過結合PMF解析結果與交通部提供之車流量資料決定合適之移動源指標物種。此外,根據測站周圍之人口密度將空品測站區分都會及非都會區域,解析不同地區所受到移動源之影響程度大小。移動污染源排放實車測試資料之分析,以具代表性之實車測試資料進行情境分析,分期別及道路別探討排放特性,瞭解不同平均速度下各污染物排放係數實測結果與模式推估結果之差異,以及分期別討論排放特性之重要性。完成實車測試補充調查工作,共進行二輛次之實車測試累積12小時測試數據。移動污染源管制策略上,主要研析國內外移動污染源管制策略及其相關減量情境與實行之可行性,以及針對高屏總量管制計畫中移動污染源減量抵換處理內容進行探討。本年度計畫工作成果摘要如下: 一、 本年度移動污染源排放量推估工作,依據總量推估系統各因子參數的蒐集更新,以及參數學理運用方式改變,活動強度運算解析度的提升,重新推估出104年及105年排放總量,推估之污染物種包含TSP、PM10、PM2.5、SOx、NOx、CO、THC、NMHC及Pb。相較104年排放量,105年各污染物排放量變化有下降之趨勢,受到活動強度與排放係數消長所造成,其中最為顯著為NMHC及CO污染物種排放量明顯減少6.26%及6.24%,主要在活動強度計算上二行程機車減少20%所致。 二、 PMF模式解析移動源貢獻量,探討移動源與高PM2.5濃度事件之關係,本次研究報告顯示移動源貢獻量比例,高PM2.5濃度事件與非高PM2.5濃度事件移動源貢獻量比例相似。104年高PM2.5濃度事件日分析,比較移動源貢獻比例與PM2.5演變趨勢,高PM2.5濃度變化發生時段與移動源關係可能較弱。 三、 本計畫證實CO濃度趨勢變化與移動污染源有一定的關係存在,並以CO作為移動源指標物種。以CO濃度變化輔助解析埔里與竹東地區之PM2.5逐年濃度下降變化趨勢,並加入氣象因子一同探討,推測105年埔里之PM2.5濃度下降和移動源關係可能較弱,與氣象因子的改變關係較大。 四、 分析歷年汽油小客車實車測試資料分析,顯示不同道路類型下移動污染源排放特性差異大,市區道路型態停等及減速較多之路徑,實車測試平均車速低於30km/h,各排放係數較高尤其以CO2污染物排放係數及FC(油耗)燃油效率表現為明顯,其污染物排放係數的分布區間亦較其它路徑來的高。而油電小客車則是在高速或低速路段,各污染物皆呈現較穩定的排放係數,相較於汽油或柴油小客車較不受停等及減速影響。不同期別小客車排放特性CO、HC及NOx污染物排放係數以三期汽油小客車排放量最高,此外柴油車的HC及NOx污染物排放係數相較高於同期汽油車。 五、 符合三期與四期排放標準汽油小客車道路實測數據與模式推估之排放係數及趨勢比較,其中NOx實測排放係數及不同速度下之趨勢變化,與模式相比有較明顯之差異。 六、 解析102-105年各車種、車齡之車輛數分布對各空品區移動污染源排放量占比變化,結果呈現歷年各空品區柴油大貨車仍以三期前之老舊車輛數為多且在PM2.5及NOx排放量有較高占比,藉以進一步推估推動老舊柴油大貨車淘汰將有助於各空品區排放減量比例達20%以上。彙整國內各部會以及國際間執行移動污染源相關之管制策略,完成策略減量情境結果推估以及實行相關策略之可行性或可能衝擊評估。並依高屏總量管制計畫中移動污染源減量抵換處理原則,提出修正建議及提供國外運作抵換方式參考,針對第二期程高屏地區移動污染源車輛排放減量目標,進行其可供抵換之污染物排放量計算。
中文關鍵字 移動污染源、空氣品質分析、車載污染物量測系統

基本資訊

專案計畫編號 EPA-105-FA13-03-A271 經費年度 105 計畫經費 11250 千元
專案開始日期 2016/10/19 專案結束日期 2017/10/31 專案主持人 陳錦煌
主辦單位 空保處 承辦人 陳惠琦 執行單位 景丰科技股份有限公司

成果下載

類型 檔名 檔案大小 說明
期末報告 EPA-105-FA13-03-A271.pdf 36MB 移動污染源排放總量推估及管制期末報告

Evaluate and control the Total Quality of Mobile Emission

英文摘要 This project focuses on the estimation of the total emissions of major air pollutants from mobile sources in 2015 and 2016. To renew the parameter source of mobile pollutants emission estimation model, we evaluate the accuracy of activity intensity, which is calculated by fuel consumption, and zero mileage degradation rate. Furthermore, in order to analyze the impact of mobile pollution sources on air quality, we use the photochemical station hourly data and Positive Matrix Factorization (PMF) model to estimate the source contributions of mobile pollution, and discuss the relationship between mobile source and distribution of PM2.5. The Real-world on-road measurements and data analysis of various types of vehicles on different road grades were completed. The Real-world on-road measurement results were also compared to emission factors of Mobile Taiwan 2.0. On the other hand, this project also focuses on mobile pollution control strategy, including the analysis of domestic and foreign mobile pollution control strategies, related reduction scenarios and the feasibility of implementation. 1. The estimation of the total emissions of major air pollutants from mobile sources in 2015 and 2016 was completed. The results show (that) emissions of TSP, PM10, PM2.5, SOx, NOx, THC, NMHC, CO in 2016 were slightly reduced compared with 2015. This reduction, which was associated with activity intensity and emission factors, shows significantly on NMHC and CO by 6.26% and 6.24%. The primary cause of this reduction is 20% decrease of two Stroke Cycle Scooters in calculation of activity intensity. 2. Air quality analysis we investigated the difference of percentage of mobile source contributions between “high PM2.5 episode” and “non-high PM2.5 episode” through analyzing monitoring data collected from Wanhua air quality monitoring station (AQMS). After applied statistical analysis, we found that there was no significant difference between the two episodes. Besides, we also analyzed the high PM2.5 episode occurring on February 5th in 2015. We infer that the PM2.5 level was not only mainly affected by mobile sources but also other factors on that day. 3. According to the results obtained from Pearson correlation analysis and cluster analysis, we found that CO, which is a monitoring item of AQMSs, has the most similar temporal variation to mobile sources temporal variation. Furthermore, we also investigate the PM2.5 variation of Puli and Zhudong station from 2014 to 2016. The results showed that the decrease of PM2.5 of Puli station in 2016 may have a lower correlation with mobile sources but higher correlation with meteorological factors. We also applied CMAQ model to simulate the impact from mobile sources to PM2.5 level in Puli area. We infer that the decrease of PM2.5 of Puli station in 2016 may have a lower correlation with mobile sources as well. 4. In the past project, Portable Emission Measurement System (PEMS) tests were performed in order to investigate the impact of road grade on on-road exhaust emissions of passenger vehicles. The results show road grade was found to have a significant impact on vehicle exhaust emissions, especially, have higher emission factors of CO2 and FC of gasoline passenger cars on urban road, when speed lower than 30km/h. Furthermore, the real world emissions of CO, HC and NOx shows highest emission factors from Euro 3 gasoline passenger cars. The HC and NOx emission factors of diesel passenger cars were higher than gasoline passenger cars. 5. Real-world on-road measurements for gasoline cars were performed. Comparisons between Real-world on-road measurements and Mobile Taiwan 2.0 emission factors shows that of the Euro 3 and Euro 4 gasoline cars are similar to MT-2.0 model. But significant differences were found in emission factors of NOx for several speed ranges. 6. The result showed that the Air Quality Areas still use the large number of diesel vehicles which before 1999 and have a higher emissions proportion of PM2.5 and NOx by analyzing the changes of the mobile emission proportion in each Air Quality Areas from 2013 to 2016. We further estimate if eliminating all the old diesel vehicles will reduce the emissions of PM2.5 and NOx by more than 20% in all air quality areas. Otherwise, we already assembled the control strategy of mobile sources control of the domestic and international agencies; complete the estimation of mobile strategic reduction scenarios and the feasibility of implementing and possible impact assessment for the relevant strategies. According to the principle of trading the mobile source’s offsets to the Stationary air pollution in the Cap and Trade plan, we put forward suggestions for amendment and foreign references for the way of providing operation. The report also presented a calculation for the emission reduction targets of mobile sources control in the second phase of the plan which is made of the mobile source’s offsets that can be exchanged for them. TSP is 22 tons/year, NOx is 306 tons/year, and VOC is 356 tons/year.
英文關鍵字 Mobile source, Air quality analysis, Portable Emission Measurement System