環境資源報告成果查詢系統

多接收器感應耦合電漿質譜法應用於水體環境污染源鑑識研究(2/2)

中文摘要 本研究為第二年之計畫,第一年針對自然界水體樣品,已完成鍶、鉛、鐵和鉬等元素之化學純化方法與MC-ICP-MS同位素質譜分析術之建立。本年度研究的重點為實際應用已建立之同位素分析方法於台灣受污染之河川流域,進行流域調查、污水處理單元廢水分析、以及污染熱點之連續觀測分析,以系統性評估金屬同位素於水體環境污染源鑑識的可行性。本年度之計畫分析了河水樣品中的主要、次要及微量元素濃度以及相關之金屬同位素比值,期能找出合適之金屬同位素系統來追蹤受人為活動影響之水體環境污染的可能來源。本研究完成台灣南部兩條重度污染的河川流域(急水溪及阿公店溪)採樣,以及其微量金屬元素濃度與鍶、鉛、鐵、鉬同位素分析。結果顯示,微量金屬濃度的分佈及變化與匯入之水體化學有關。兩流域河水溶解相與總可回收相之比較顯示鍶、鉬主要存在於溶解相中,分別佔總可回收相之61~100 %、79 ~ 100 %;而鐵、鉛在溶解相中較少,分別只佔總可回收相之0 ~ 49%、0 ~ 24 %。污染熱點連續採樣分析結果顯示金屬濃度在兩流域的變化大,且在降雨事件時不同元素有明顯不同的變化行為(如:鍶、鉬被稀釋;鐵、鉛濃度增加),且阿公店溪流域之重金屬濃度變化較急水溪複雜,明顯受到其他水體輸入所影響,不易釐清自然與人為來源之相對貢獻。而鍶、鉛、鐵、鉬同位素分析結果則發現自然源(上游河水)與人為來源(污水處理單元廢水)之同位素比值很不相同,可追蹤人為來源並進一步估算相對貢獻量。此外,在非降雨期間,河水樣本同位素比值反映受到污染之結果;而降雨時,鍶、鐵、鉛、鉬同位素結果指示降雨事件所帶來高濃度自然源懸浮顆粒為造成河水中鐵、鉛濃度大幅升高之主因。本研究結果顯示多重同位素示蹤法於河川污染來源追蹤極具潛力,然而因為工廠數量多、排放來源具複雜度。若能夠掌握流域中排放者並建立其同位素指紋特徵,對於污染事件發生時,應能提供更為正確之資訊。
中文關鍵字 多接收器感應耦合電漿質譜儀、水體環境、金屬污染

基本資訊

專案計畫編號 108-03-01-01 經費年度 109 計畫經費 2970 千元
專案開始日期 2020/03/12 專案結束日期 2020/12/31 專案主持人 黃國芳
主辦單位 環檢所 承辦人 許志福 執行單位 中央研究院地球科學研究所

成果下載

類型 檔名 檔案大小 說明
期末報告 多接收器感應耦合電漿質譜法應用於水體環境污染源鑑識研究(2).pdf 6MB

Tracing sources of metal pollutions in the aquatic environment using MC-ICP-MS (2/2)

英文摘要 With the successful developments of the analytical protocols for Sr, Pb, Fe, and Mo isotopes in environmental water samples last year, we further apply these methods to investigate pollution sources of heavily polluted rivers in Taiwan, i.e., the Jishui River and the Agondian River. With assistance from EAL, we have completed water samplings for river water and wastewater from different types of industries in the two river catchments. Concentrations of major and trace elements and Sr-Pb-Fe-Mo isotope ratios were analyzed for the total recoverable fractions (NIEA W313.54B) of the water samples. The results of metal concentrations show spatial and temporal variations in the studied rivers, most likely reflecting mixings between natural and anthropogenic inputs in the catchment scale. Continuous monitoring at the pollution hot spots in both rivers indicates that elements behave differently during rain events. For example, elevated Fe and Pb concentrations were observed in the rain events, while concentrations of Sr and Mo decreased. In contrast, the variations of heavy metal concentrations (e.g., Ni, Cu, and Zn) did not follow the concentrations of suspended particles in the Agondian River, suggesting significant influences of anthropogenic inputs in this river catchment. The isotope compositions of Sr, Pb, and Fe in the Agondian River are distinctively different between natural (river water) and anthropogenic (wastewater) sources. The Fe-Pb isotope ratios indicate that high concentrations of Fe and Pb during the rain events are mainly derived from natural sources, whereas it shows more anthropogenic contributions when there is no rain. This study confirms the great potential of using metal isotopes for tracing sources of metal pollutions in river catchments, and measurements on isotopic signatures of different industries/factories within the studied catchment are required to better constrain the relative contributions from natural and anthropogenic sources.
英文關鍵字 MC-ICP-MS, aquatic environment, metal pollution