環境資源報告成果查詢系統

109年度新北市移動污染源排放分析暨智能管理計畫

中文摘要 (一) 移動源排放量推估 根據108年度交通大數據,進行運輸需求預測模型校估,並結合環保署空污排放係數進行移動源空污排放量推估。分析結果得知,主要污染物排放量分別為CO(29,418公噸)、NOX(15,677公噸)、THC(11,161公噸),且108年排放量略低於107年。本計畫以路網及網格兩種方式繪製108年新北市移動源空污排放地圖。 根據板橋區實施小客車單雙號管制策略模擬結果,以SOX減量成效最顯著,約下降13%~16%,其次PM10下降9%~11%、PM2.5下降9%~10%。 (二) 高污染機車辨識 於新北市境內裝設10處機車車輛辨識設備, 自109年1月上線至109年11月已取得約3,387萬車次資料(正確率介於81.54%~85.82%),進一步比對二行程機車清單(約8.7萬輛),已掌握有8,888個二行程機車車牌。 (三) 空氣品質模式發展與空品事件日分析 本計畫已整合氣象、環境觀測資料及交通模式完成空氣品質模式建構,並精進空氣品質模式發展空間尺度解析度至150mX150m,進行PM2.5分析。 針對109年1月6日及1月7日進行空品事件日觀察,評估PM2.5主要污染來源為工廠及移動源。進一步評估納入交通改善策略後,可使PM2.5之測站量測值減少0.01μg/m3。
中文關鍵字 移動污染源排放、車牌辨識、空品模式

基本資訊

專案計畫編號 經費年度 109 計畫經費 8240 千元
專案開始日期 2019/12/02 專案結束日期 2020/12/01 專案主持人
主辦單位 新北市政府環境保護局 承辦人 張宏義 執行單位 鼎漢國際工程顧問股份有限公司

成果下載

類型 檔名 檔案大小 說明
期末報告 109年度新北市移動污染源排放分析暨智能管理計畫期末報告定稿(上傳版本).pdf 53MB

2020 New Taipei City Mobile source Emission Analysis and Intelligence Management Plan

英文摘要 1. Mobile source emissions estimation Based on the 2019 annual traffic big data, the transportation demand model is calibrated, and the mobile source emissions are estimated in combination with the EPA source emission factor. The analysis shows that the emissions of major pollutants are CO (29,418 tons), NOX (15,677 metric tons), THC (11,161 metric tons), and emissions in 2019 are slightly lower than in 2018. This study draws a 2019 City mobile source emission map with the road network and grid format. According to the simulation results of the odd/even license number restricted control for passenger cars in Banqiao District, the SOX reduction has the most significant effect, with a decrease of about 13%~16%, followed by a decrease of 9%~11% for PM10 and 9%~10% for PM2.5. 2. High pollution motorcycle identification The installation of 10 license plate recognizers for the motorcycle in New Taipei City was operated in Jan. 2020. There were about 33.9 million motorcycle trips have been collected (the correct rate is between 81.54% and 85.82%). A Comparison of high-pollution motorcycle data shows that 8,888 two-stroke scooters/motorcycles license plates were obtained between January and November of 2020. 3. Air quality model development and air quality event day simulation This project has integrated meteorological, environmental observation data ,and transportation demand model to build the air quality model to conduct PM2.5 analysis which refined the spatial scale resolution to 150m  150m. On 2020/1/6, the daily observation of the air quality was carried out, and the main sources of PM2.5 pollution were assessed as factories and mobile sources. After further evaluation and adoption of the traffic improvement strategy, the measured value of PM2.5 at the observation station can be reduced by 0.01 μg/m3.
英文關鍵字 Mobile source emission, license plate recognizers, Air quality model