環境資源報告成果查詢系統

建置AERMOD本土化模式及空品模式審驗制度專案工作計畫(三)

中文摘要 為了與國際接軌並提升臺灣在高斯類擴散模式模擬應用之水準,本計畫建置AERMOD模式系統為適用臺灣的模式系統,其中包括AERMOD使用規範、技術文件、操作手冊、BPIPPRM操作手冊等文件,以及公告為法規模式之各項準備工作。因應空氣汙染排放許可申請之容許增量限值模擬需要,公告2019基準年O3、PM10及PM2.5污染案例月及案例季,與2019年1月、4月、7月、10月WRF氣象輸入檔,並更新AERMOD氣象輸入檔及擴充ISCST3模式2020年氣象輸入檔,資料皆發佈於空氣品質模式支援中心網站,並提供技術諮詢及研習會議。同時,協助環保署完成「空氣品質模式模擬規範」、「空氣污染物容許增量限值」修訂,及「空氣品質模式評估技術規範」、「開發行為空氣污染物排放量增量抵換處理原則」、「空氣品質政策評估模擬規範」之修訂初稿,並辦理一定規模以上污染源模式模擬技術審查申請案,以及新增污染源環境影響評估案之空氣品質模式模擬審查與分析。 懸浮微粒及臭氧污染改善要求,及境外長程傳輸對臺灣影響動態之掌握方面,以2019年為基準年模擬1月、4月、7月、10月臺灣三大類人為源(工業源、交通源、逸散源)及跨空品區傳輸,與區域性來源對臺灣PM2.5及最大8小時臭氧(DM8O3)濃度影響。模擬結果顯示,各空品區PM2.5年平均濃度皆以逸散源影響最高(介於21-34%),其次皆為交通源;跨空品區傳輸影響,北部及中部空品區排放源對中南部各空品區PM2.5年平均濃度皆可造成5%-10%的影響,且臺灣自身排放對於PM2.5的影響,會隨著PM2.5污染程度的上升而明顯增加。DM8O3則以交通源影響全臺年平均濃度最高(12.2%),工業源次之(8.1%);跨空品區傳輸影響,北部空品區對全臺DM8O3年平均濃度影響最高(11.8%)、中部次之(5.8%),北部、中部及雲嘉南對其鄰近空品區造成相對較高的影響比例。整體而言,臺灣各地區執行VOC減量都有O3改善效益,但臺灣部份地區僅NOx減量會造成O3略為惡化,因此建議臺灣排放管制策略之VOC減量比例應大於NOx。境外長程傳輸對臺灣空氣品質之影響,臺灣大氣中PM2.5的區域性來源可分為臺灣自身排放、東亞各國傳輸、國際船運傳輸、及東亞背景等四大來源,臺灣PM2.5年平均濃度受到臺灣自身排放影響達53%,東亞各國傳輸影響29%,國際船運傳輸影響15%、及東亞背景影響3%;而臺灣大氣中O3的區域性來源可區分為臺灣自身排放、東亞境外傳輸影及東亞背景等三大來源,全臺DM8O3年平均濃度,受臺灣自身排放影響34%,東亞境外傳輸影響29%、東亞背景影響38%。對臺灣而言,除東亞背景濃度無法控制外,東亞(包括東亞各國、國際船運)境外傳輸影響佔相當大的比例,為了改善臺灣O3與PM2.5污染,除臺灣自身的努力外,鄰近國家的污染減量對臺灣空氣品質的改善也相當重要。
中文關鍵字 容許增量限值、空氣品質模式模擬規範、細懸浮微粒、臭氧

基本資訊

專案計畫編號 經費年度 110 計畫經費 9960 千元
專案開始日期 2021/08/10 專案結束日期 2022/08/09 專案主持人 張艮輝
主辦單位 空保處 承辦人 梁喬凱 執行單位 國立雲林科技大學

成果下載

類型 檔名 檔案大小 說明
期末報告 成果報告定稿本.pdf 25MB 成果報告定稿本

Establish domestic AERMOD model and air quality model validation system(III)

英文摘要 Based on the need of air quality modeling regulation and upgrade of Gaussian diffusion model application in Taiwan, the AERMOD system suitable for Taiwan was established and the preparations for AERMOD to be announced as regulation model was also completed in the study. The updates and announcements of relevant information for air quality modeling increments, information are published on the AQMC website. The revisions for the regulations of "Air Quality Model Simulation Specification" and "Tolerable Incremental Limits of Air Pollutants" have been completed after a series of procedures in the study. The draft version of revision for the regulations of "Technical Specifications for Air Quality Model Assessment", "Principle of Offset Treatment of Air Pollutant Emissions in Development Behavior", and "Simulation Specification for Air Quality Policy Assessment" have been proposed in the study. Technical examinations of air quality modeling for Stationary Pollution Source Installation and Operating Permit and technical review and analysis of air quality modeling for the application cases of environment impact assessment were also implemented to assist EPA in the study. In response to the research and evaluation of fine Particulate Matter (PM2.5) and ozone (O3) pollution improvement strategies, the dynamic changes for the long-range transport of overseas influence on Taiwan. The PM2.5 and O3-related air quality simulation and performance evaluation for January, April, July, and October 2019 have been done in this study. The influences of cross county/city/air basin transport and three kind of anthropogenic sources including point (industry), line (vehicle), and area (fugitive) emissions on atmospheric PM2.5 and DM8O3 (daily maximum 8-hour average O3) in Taiwan have also been simulated and studied. In the study of cross air basin transport effect on PM2.5, the emission of North, Chu-Miao and Central air basin performed significant effect, 21%-34%, on PM2.5 concentration of southern part of Central air basin. In the study of three kind of anthropogenic sources effect, the annual average concentrations of PM2.5 at all air basin in Taiwan were most affected by the area source, followed by the line source. The results show that the higher PM2.5 pollution level, the higher PM2.5 ratio contributed by Taiwan-self emission, and the anthropogenic sources of Taiwan can contribute as high as up to 65% under the very unhealthy level of PM2.5 pollution (PM2.5 ≥ 70.5 μg/m3). In the study of cross air basin transport effect on DM8O3, the emission of North air basin performed the highest effect (11.8%) on Taiwan's DM8O3, while the emission of Central air basin was second (5.8%). The highest effect on Taiwan's DM8O3 was line source (12.2%), followed by point source (8.1%); while the higher DM8O3 pollution level, the higher DM8O3 ratio contributed by Taiwan-self emission, and the contribution can be as high as up to 51% under the unhealthy level of DM8O3 pollution. The simulation results also showed that the NMHC emission reduction can improve the O3 concentration for whole area in Taiwan. However, the NOx emission reduction only (without NMHC reduction) may result O3 increase in some area in Taiwan. Therefore, it is recommended that the reduction ratio of NMHC emission should be larger than the one of NOx emission. The simulation results of long-range transport showed that the annual average concentration of DM8O3 in Taiwan in 2019 is about 34% contributed by Taiwan-self emission, 29% transported by East Asia emissions, and 38% affected by the background of East Asia; while the annual average concentration of PM2.5 in Taiwan is about 53% contributed by Taiwan-self emission, 44% transported by East Asia emissions (including East Asian countries and international shipping), and 3% affected by background of East Asia. Due to the importance of long-range transport from, the emission reduction of East Asia emission will be good for the improvement of ozone and PM2.5 in Taiwan, besides Taiwan's own efforts.
英文關鍵字 allowable increment limit, guideline of air qulaity modeling, PM2.5, ozone