110年微脈衝雷射雷達監測網與氣膠自動監測網操作維護及資料解析專案計畫
中文摘要 | 空氣品質與氣象條件息息相關,從中小尺度環流至邊界層氣象的掌握,皆影響空氣品質預報與分析的成效。在過去的幾十年裡,東南亞各地區,有著高度的經濟與人口成長,大量增加的各類工廠、人為活動甚至生質燃燒等,便更進一步地降低此區域空氣品質。而台灣本土的空氣污染問題亦日益受到重視,中部至雲嘉南空品區經常性出現高PM2.5污染事件,類似之污染事件除了受排放源直接影響外,大氣擴散條件不佳亦為元凶之一,因此探討邊界層發展結構特性與空氣品質關係,將有助釐清污染成因。地面空氣品質監測網雖然能夠提供地面以及區域性的特性,但卻無法解釋垂直方向上氣膠分布的特性,因此利用光學遙測技術於長時間持續監測垂直方向氣膠光學特性,提供污染物在垂直剖面上隨時間演變的資料便顯得重要。 本計畫之目標與工作內容為(1)持續與NASA MPLNET與AERONET進行國際合作交流,及技術諮詢與資料交換;(2)強化設備技術支援檢修量能與辦理教育訓練等工作以提升微脈衝雷射雷達系統觀測準確度;(3)協助提供微脈衝雷射雷達系統及太陽光度計之專業諮詢及相關儀器評估、監測站運轉之環境與安全資訊;(4)建構觀測資料庫並定期完成資料品質保證與品質管制作業;(5)整合微脈衝雷射雷達系統與環保署空氣品質測站等監測資料,提供高污染事件之可能成因分析報告,輔助空氣品質預報作業;(6)研析邊界層高度估算方式,並計算氣膠光學厚度之長期趨勢。 執行之重要成果如下: • 為提高資料品質並加強國際交流,本計畫持續與NASA MPLNET及AERONET進行合作交流,包含技術諮詢與資料交換、調整與校準校正設備、儀器寄送檢修等。 • 持續強化微脈衝光達觀測量能,計畫執行期間於WFR設備之調整與校準有顯著進展,不僅對於近地表資料之可信度提升,更能增進亞洲指標站之重要性。於硬體維護方面,亦持續協助處理舊機櫃之冷氣故障問題,包含加強溫溼度檢測以研討改善計畫。 • 為維持站體與儀器運作穩定,本計畫持續中大站、西屯站、斗六站與左營站站體定期維護,每月AP/DC校正程序及現地維護員訓練等工作。完成返美維修之微脈衝光達完成運轉測試,並指定為新的EPA-NCU測站觀測機,為臺灣光達觀測網的參考光達。 • 建立資料品質管控程序,持續更新與維護環保署微脈衝雷射雷達測站網頁及資料庫,並於網頁上提供影像判讀方式及資料使用辦法說明,提供計畫相關人員及環保署人員查詢,亦提供專業諮詢及相關儀器評估、監測站運轉之環境與安全等資訊。 • 以客觀統計方法定義出高污染並建立事件資料庫,整合微脈衝雷射雷達系統、空氣品質測站、氣象資料、無人機觀測資料等,並更新天氣分類方法,觀察污染物垂直及水平方向分布情形,釐清區域性污染傳送特徵,有效應用於署內針對高污染事件探討。 • 完成計畫期間邊界層高度小時值計算,探討從北到南大氣垂直結構季節性特徵,輔助預報作業參考,並提供邊界層高度小時預報之構想雛形。並利用太陽光度計統計氣膠長期趨勢,計算AOD與PM2.5之相關性,逐步建立將污染特性特徵化且追蹤可能污染來源的經驗。 | ||
---|---|---|---|
中文關鍵字 | 微脈衝雷射雷達、氣膠垂直分布、國際合作 |
基本資訊
專案計畫編號 | 經費年度 | 110 | 計畫經費 | 3350 千元 | |
---|---|---|---|---|---|
專案開始日期 | 2020/12/01 | 專案結束日期 | 2021/12/31 | 專案主持人 | 王聖翔 |
主辦單位 | 監資處 | 承辦人 | 陳荸之 | 執行單位 | 國立中央大學 |
成果下載
類型 | 檔名 | 檔案大小 | 說明 |
---|---|---|---|
期末報告 | 成果報告.pdf | 31MB | 110年微脈衝雷射雷達監測網與氣膠自動監測網操作維護及資料解析專案計畫成果報告 |
2021 Micro-Pulse Lidar and Aerosol automatically observation network operation, maintenance, and data analyzing project
英文摘要 | The deterioration of air quality is strongly related to the meteorological condition. A better understating on the microscale, mesoscale, and PBL meteorology can effectively help the implement of air quality forecast and analysis. In the past decades, the Southeast Asia has experienced remarkable economic and population growth. The large increase in various types of factories, human activities, and biomass burning decreased the air quality over this region. The local air pollution of Taiwan gets more attention recently. High PM2.5 concentration events occur frequently in Central and Southern Taiwan, not only due to the emissions but also the weak atmospheric diffusion condition. Therefore, understanding the thermodynamics structure within PBL can help to clarify the cause of deteriorating air quality. Although the EPA Taiwan Air Quality Monitoring network provides the air quality information at the ground level, it cannot explain the PM2.5 characteristics in vertical. Therefore, observing the aerosol optical characteristics in the vertical direction by using remote sensing techniques, which can monitor the change of pollutants over time and space, is complementary for air quality monitoring. The objectives and task of this project are: (1) to continue the conduct of international collaborations cooperation with NASA MPLNET and AERONET, and technical consultation and data exchange; (2) to strengthen the abilities to replace components that improve the accuracy of observation, also holding the training course for stations and equipment maintenance; (3) to offer professional consultation on micro-pulse lidar systems and sun photometers, evaluation of related equipment, and environmental safety information about the stations; (4) to build the lidar observation database and accomplish the operations of data QA/QC; (5) to integrate the observational data based on EPA MPL systems and air quality monitoring station, and further analyze the possible causes of high pollution events, also export its potential on air quality forecast; (6) to develop the method of estimating boundary layer height, and calculate the long-term trend of the aerosol optical depth (AOD). The important achievements from this project are listed as follows: • We continued to cooperate with NASA MPLNET and AERONET. We used online meeting with the chair of MPLNET and the main engineering staff for discussing data retrieval techniques, calibrating the WFR equipment, and educating the techniques on calibrating and replacing components. We also hold the training course for stations and equipment maintenance. • We maintained the four MPL stations over Taiwan, including the regular maintenance, monthly calibration, and local staffs training. We installed and operated the MPL which returned from the US, to make sure the performance well. • We had executed the AP/DC calibration and data QA/QC procedure on schedule to ensure the availability and stability of MPL data. The MPL data has been posted to webpages and database real time and update to EPA server simultaneously. • We applied a statistical method to define the high pollution events in this year and set up a database for case studies. We systematically analyze those pollution events with observational data obtained from EPA MPL system and air quality monitoring stations in Taiwan. We explained the causes of high pollution events based on multiscale analysis including vertical and horizontal distribution of particulate matters and meteorological conditions. The results from those case studies significantly improve our understanding on the air quality deterioration. • We developed the method of estimating boundary layer height and provided the preliminary research of analyzing PBLH seasonal characteristics and forecasting PBLH hourly. We calculated the long-term trend of the aerosol optical depth and provided statistical descriptions. | ||
---|---|---|---|
英文關鍵字 | Micro-pulse lidar (MPL), Aerosol vertical distribution, International collaboration |