環境資源報告成果查詢系統

111年綜觀天氣型態及流場影響空氣品質評析計畫

中文摘要 為了解綜觀天氣型態與空氣品質的關聯性,本計畫綜整每日之天氣型態,持續擴充 111 年迄今之查詢工具歷史資料庫,並增加污染物趨勢圖以及優化查詢功能,並完成「空品數據統計查詢」之功能,可縮短預報人員搜索及綜整相關資訊的時間,並提供判斷該天氣型態空品等級之預報參考依據。 此外彙整 98 年至 110 年颱風外圍環流及颱風影響期間,空氣污染事件日之颱風位置分布以及伴隨臺灣附近流場分布,分析格點及各監測站的PM2.5、PM10、O3 及臭氧八小時(O3, 8hr)濃度值,統計各網格之污染事件日數與頻率,且透過歷史颱風所在位置伴隨著流場,提供「颱風空氣品質預報」,亦完成「高低壓查詢」功能,讓預報人員可選擇不同時段高低壓位置,並得知各地區空氣品質概況。 另外並輔助辦理未來 7 日空氣品質展望、協助環保署空氣品質污染事件分析,提供 AERMOD 擴散模式及 Hysplit 軌跡模式模擬結果。為了探討臭氧空氣污染事件與天氣型態之關聯,分析兩件臭氧事件日各因子對臭氧的消長外,利用分位數迴歸分析及決策樹演算,建立各空品區單點測站之決策樹模型,以提供預報員進行相關臭氧預報之參考。完成製作2則科普圖文,傳達空氣品質與污染成因之正確訊息來協助民眾理解。另完成辦理AERMOD 擴散模式教育訓練,有助於提升預報人員對於AERMOD模式之認識,未來可運用於緊急事件分析等相關輔助工作。
中文關鍵字 臭氧,天氣型態,空氣品質

基本資訊

專案計畫編號 經費年度 111 計畫經費 3330 千元
專案開始日期 2022/04/01 專案結束日期 2023/08/31 專案主持人 賴信志
主辦單位 環境部監測資訊司 承辦人 葉亭妤 執行單位 長榮大學

成果下載

類型 檔名 檔案大小 說明
期末報告 111年綜觀天氣型態及流場影響空氣品質評析計畫-定稿_final.pdf 38MB 111年綜觀天氣型態及流場影響空氣品質評析計畫定稿版

Analysis of the air pollution affected by weather type in Taiwan in 2022

英文摘要 To understand the relationship between overall weather patterns and air quality, this project integrates daily weather patterns and continuously expands a historical database from 2022 until now. It also includes the addition of pollution trend charts and optimized query functionalities. Furthermore, the project has completed the "Air Quality Data Statistical Query" feature, which reduces the time for forecasters to search and organize relevant information and provides decision-making references for determining air quality forecasts based on specific weather patterns. In addition, the project has compiled data on the distribution of typhoon locations during the peripheral circulation and impact periods from 2009 to 2021. It analyzes the concentrations of PM2.5, PM10, O3, and O3, 8hr at grid points and monitoring stations, and calculates the number and frequency of pollution event days in each grid. By considering the historical typhoon locations and their accompanying flow patterns, the project provides "Typhoon Air Quality Forecasts" and has also completed the "High-Low Pressure Query" feature, which allows forecasters to select different time periods and pressure locations to obtain an overview of air quality in different regions. Additionally, the project assists in providing a 7-day air quality outlook and supports the analysis of air quality pollution events by the EPA. It offers simulation results using the AERMOD dispersion model and the Hysplit trajectory model. To explore the relationship between ozone air pollution events and weather patterns, the project analyzes the factors influencing ozone fluctuations on specific ozone event days. Through quantile regression analysis and decision tree algorithms, it establishes decision tree models for individual monitoring stations in various air quality zones, providing references for ozone forecasting. The project has also produced two popular science graphics and texts to convey accurate information about air quality and pollution causes, aiding public understanding. Additionally, an educational training session on the AERMOD dispersion model has been conducted to enhance forecasters' familiarity with the model, enabling its application in emergency event analysis and related support work in the future.
英文關鍵字 ozone, weather type,air quality, air pollution