環境資源報告成果查詢系統

水中乙烯、乙烷、甲烷快篩技術(2/2)

中文摘要 本計畫目標為以質譜法開發水中乙烯、乙烷、甲烷快篩技術。計畫內蒐集、彙整、評析國內外水中烯烴、烷烴、含氯烯烴及含氯烷烴等低分子量有機化合物快篩技術之國內外參考文獻,瞭解相關技術發展現況及其應用性。 烯烴和烷烴殘留濃度的測定對於評估氯化烯烴和烷烴污染場址的整治成效至關重要。氯化烯烴和氯化烷烴是有毒、具有生物累積性和持久性的化合物,會對人類健康和環境造成不利影響。烯烴和烷烴的分析通常使用分離技術與非質譜檢測方法學聯用,例如火焰離子化檢測器 (FID) 和電子捕捉偵測器(ECD)。然而,傳統的方法耗時,並且受限於檢測器的適用性。此外,準確性,即偽陽性或偽陰性結果,於濃度接近環境背景濃度常造成。本計畫著重於複合游離源之可攜式質譜法技術研發,同時使用商用質譜法建置水中乙烯、乙烷、甲烷之萃取、預濃縮與檢量線配製技術。再者,建立此方法學之精密度與準確度相關品管指標,評估最適化定量模型之可行性。於商用氣相層析質譜法部分,兩種進樣方法 (直接氣體注射與固相微萃取預濃縮進樣) 在兩種樣品類型 (同位素內標添加單一氣體標準品與氣體樣品配製於基質混合氣體),建置檢量線並評估其操作時間、預濃縮效率、精密度及準確度等相關品管指標。在 1.28-1278.9、1.28-1282.8 和 6.77-676.70 mg/L 的濃度範圍內,同位素內標添加之乙烯、乙烷和甲烷的相關係數(r)分別為 0.9995、0.9985 和 0.9974(直接氣體進樣模式)。基質存在的乙烯、乙烷和甲烷在相同濃度範圍內的 r 分別為 0.9993、0.9999 和 0.9978。建議採用直接氣體注 射方式無須添加同位素內標用以建置檢量線。 再者,本研究採用固相微萃取 (SPME) 來濃縮目標分析物。 Carboxen®/聚二甲基矽氧烷 (CAR/PDMS) 塗層在本研究中產生最佳結果。然而,CAR/PDMS 未能有效預濃縮甲烷。SPME 吸附時間為一分鐘。在兩次注射之 間,需要於 290 °C 下,維持 26 分鐘以消除殘留物。在不同濃度下,乙烯和乙烷的訊號分別倍率增加22.4±2.8 至 16.4±0.4 和 65.1±6.6 至 43.4±4.9。分別在 1.28-1278.9、0.13-1282.8 mg/L 範圍內建立了同位素內標添加乙烯和乙烷的檢量線,其中 r 分別為 0.992 和 0.999。然而,CAR/PDMS 不適用於甲烷。對於基質中的乙烯和乙烷,r 分別為 0.9703 和 0.9852。SPME 方法產生了 6.16-39.29% 之高相對標準偏差 (RSD)。故,本研究建議使用 SPME 方法執行定性分析。 於自行研發可攜式離子阱質譜法,發展不同游離源,其包含質子傳遞反應-選擇試劑離子 (proton transfer reaction-selective reagent ion, PTR-SRI)、介電質屏蔽放電游離 (dielectric barrier discharge ionization, DBDI) 以及阱內電子電離 (internal electron ionization, iEI) 皆已開發完成。使用商用 GC-MS和實驗室建造之可攜式質譜儀測量十個真實樣品;其中以商用 GC-MS,乙烯與乙烷皆為未檢出。商用儀器檢出甲烷之濃度範圍為 16.8 至 106.91 mg/L。已自行研發質譜儀,乙烯,乙烷,甲烷皆未檢出。目前持續提升自行研發儀器於水中乙烯、乙烷、甲烷之檢測效能。 最後,成功運用上述開發技術於一污染場址檢測 10 件真實樣品,並且比較與評估商用儀器與自行研發質譜儀之檢測成效。此外,辦理國內 2 場次之技術擴散會議。
中文關鍵字 乙烯、乙烷、甲烷、固相微萃取、氣相層析質譜法、可攜式質譜法、質 子傳遞反應-選擇試劑離子、介電質屏蔽放電游離、阱內電子電離

基本資訊

專案計畫編號 經費年度 111 計畫經費 1990 千元
專案開始日期 2022/01/18 專案結束日期 2022/12/31 專案主持人 賴盈宏
主辦單位 環檢所 承辦人 廖儀如 執行單位 國立聯合大學

成果下載

類型 檔名 檔案大小 說明
期末報告 成果報告(定稿)(公開版).pdf 3MB

Screening of ethylene, ethane, and methane in water using mass spectrometry(2/2)

英文摘要 Assessment of residual concentration of alkenes and alkanes is crucial to evaluate the remediation efficiency of contaminated sites with chlorinated alkenes and alkanes. Chlorinated alkenes and alkanes are toxic, bio-accumulative, and persistent compounds that cause adverse effects on human health and the environment in cases of improper treatment. Analysis of alkenes and alkanes is commonly performed using chromatographic separation followed by non-mass spectrometric detection. However, conventional methods are time-consuming and are limited to the applicability of detectors. Moreover, the accuracy, i.e., false positive or false negative results, might be an issue. This project aims to develop an efficient method for the quantitative analysis of ethylene, ethane, and methane using mass spectrometry. Two sample preparation methods, i.e., deuteratedinternal-standards spiked samples and samples mixed with interferences, were utilized in this report. In addition, two sample introduction methods, i.e., via the direct injection and solid phase microextraction (SPME)-preconcentration, were used. Correlation coefficients (r) of 0.9995, 0.9985, and 0.9974 in the range of 1.28-1278.9, 1.28-1282.8, and 6.77-676.70 mg/L were obtained for deuteratedinternal-standards-spiked ethylene, ethane, and methane, respectively in the direct injection mode. r of 0.9993, 0.9999, and 0.9978 in the same range of concentrations were obtained for ethylene, ethane, and methane presenting in matrices, respectively, in the direct injection mode. Quality assurance and quality control were implemented, and results indicated that the direction injection method is a reliable for quantitative analysis. Second, solid phase microextraction (SPME) was utilized to upconcentrate analytes of interest. Carboxen/polydimethylsiloxane (CAR/PDMS) coating yielded the best result in this study. Extraction was completed in a minute. Signals were enriched by factors of 22.4±2.8 to 16.4±0.4 and 65.1±6.6 to 43.4±4.9 for ethylene and ethane, respectively, under different concentrations. Calibration curves in ranges of 1.28-1278.9、0.13-1282.8 mg/L were built for deuterated-internal-standards-spiked ethylene and ethane, respectively, where r of 0.992 and 0.999 were obtained. However, CAR/PDMS was not applicable to methane. For ethylene and ethane in matrices, r of 0.9703 and 0.9852 were obtained, respectively. The SPME method yielded a high relative standard deviation (RSD) in the range of 6.16-39.29 %. In between shots, a re-generation time of 26 minutes at 290 °C was required for mitigating the carry-over effect. More parameters need to be conducted to achieve quantitative analysis. SPME was currently suggested to be a screening method for environmental trace analysis. Third, a laboratory-built fieldable mass spectrometry integrating multiplexed ion sources is developed for real-time analysis. Capabilities of proton transfer reaction-selective reagent ion (PTR-SRI) and dielectric barrier discharge ionization (DBDI) for ethylene, ethane, and methane analysis are being improved. The performance of an internal electron ionization (iEI) source is being verified. Furthermore, efficiencies of sample introduction and ionization via electron impact are being optimized. Performance on detecting ethylene, ethane, and methane is being modified, even though none was detected in real samples. Ethylene and ethane were not detected using a commercial GC-MS in ten real samples. Methane was detected from 16.8 to 106.91 mg/L among ten real samples. Two workshops for technological innovation diffusion were held on the 24th of Oct. and the 31st of Oct. 2022.
英文關鍵字 ethylene, ethane, methane, solid phase microextraction, gas chromatography-mass spectrometry, fieldable mass spectrometry, proton transfer reaction-selective reagent ion, dielectric barrier discharge ionization, internal electron ionization