環境資源報告成果查詢系統

轉化廢電冰箱泡棉為回收處理業汞蒸氣吸附裝置之活性碳應用

中文摘要 本研究是透過水熱碳化法轉化廢電冰箱隔熱泡棉為含氮活性碳,應用於廢電子電器暨廢資訊物品之抽氣櫃活性碳,對比含氮活性碳與市售含硫活性碳的物化特性,汞吸附的動力研究以及除汞效果,可做為隔熱泡棉廢棄物資源化之去向。本研究的內容有添加木材鋸末共碳化、活性碳造粒、製得樣本特性分析、吸附/脫附管柱系統評估製得材料對蒸氣汞元素吸附性能評估以及於回收處理業廠內實地測試汞去除效能,以及評估成本與減碳效果。研究指出透過木材鋸末與廢電冰箱隔熱泡棉共水熱反應,自衍壓力大多維持在10 bar左右,活性碳整體產率約有40%。廢棄冰箱隔熱泡棉中的氮元素可由FTIR圖譜與XPS圖譜證實其存在製得活性碳中。我們建立一套穩定可靠的吸附/脫附管柱系統,評估製得含氮活性碳比商業含硫活性碳有較佳的汞蒸氣吸附能力,藉此衍生出汞吸附動力評估。顆粒狀含氮活性碳的預估飽和吸附容量是433g/g,顆粒狀含硫活性碳的預估飽和吸附容量是76 g/g。顆粒狀含氮活性碳以及顆粒狀商業含硫活性碳的動力曲線均較適合Elovich 方程式的擬合。我們選定桃園某回收處理業廠內實地測試汞去除效能,透過汞脫附實驗測得兩種活性碳逐月的汞吸附量,5個月內分別是110g/g與25g/g。相較之下,我們自製的含氮活性碳在廠內汞吸附裝置內有較商業含硫活性碳顯著的汞吸附能力。本研究採用水熱轉化廢冰箱隔熱泡棉為含氮活性碳。除了可減量廢棄物,亦可將廢棄物轉換為有用的碳材產品,創造效益。
中文關鍵字 水熱碳化、隔熱泡棉、活性碳

基本資訊

專案計畫編號 EPA-111-XB07 經費年度 111 計畫經費 2010 千元
專案開始日期 2022/01/01 專案結束日期 2022/11/30 專案主持人 梁亦松
主辦單位 回收基管會 承辦人 楊錫桂 執行單位 財團法人環境資源研究發展基金會

成果下載

類型 檔名 檔案大小 說明
期末報告 轉化廢電冰箱泡棉為回收處理業汞蒸氣吸附裝置之活性碳應用期末報告(定稿).pdf 4MB

Converting PU waste by hydrothermal carbonization to nitrogen-containing activated carbons for Hg removal treatment in resources recycling plant.

英文摘要 In this study, used refrigerator PU foam was converted into nitrogen-containing activated carbon by hydrothermal carbonization as a Hg sorbent in a fume hood. We investigate the co-hydrothermal reaction with wood sawdust, regarding the kinetics and performance of mercury removal. Our experimental results showed that the resulting activated carbon had a nitrogen content of 4% and a yield of 40%. Through the hydrothermal reaction of wood sawdust and waste refrigerator insulation foam, the self-derived pressure is mostly maintained at about 10 bar, and the yield of activated carbon is about 40%. The atomic nitrogen ratio in the obtained activated carbon was confirmed by FTIR spectra and XPS spectra. We established a reliable adsorption/desorption column system and evaluated the mercury vapor adsorption capacity of nitrogen-containing activated carbon and commercial sulfur-containing activated carbon to derive the kinetic parameters of mercury adsorption. The estimated saturated adsorption capacity of granular nitrogen-containing activated carbon is 433 g/g, and it is 76 g/g for granular sulfur-containing activated carbon. The kinetic curves of granular nitrogen-containing activated carbon and granular commercial sulfur-containing activated carbon are suitable for the fitting of Elovich equation. A resource recycling plant in Taoyuan was selected to implement the on-site mercury removal efficiency. Through the mercury desorption experiment, the monthly mercury adsorption amounts of the two activated carbons were measured, which were 110 g/g and 25g respectively within 5 months. The nitrogen-containing activated carbon has a significantly higher mercury adsorption capacity than commercial sulfur-containing activated carbon in the in-plant mercury adsorption device. This work not only reduces solid waste but also generates new resource.
英文關鍵字 Hydrothermal carbonization, Polyurethane wastes, Activated carbon