環境資源報告成果查詢系統

高值化回收廢尼龍織物再生高彈性纖維

中文摘要 紡織物材質其主要組成包括聚對苯二甲酸乙二酯(PET)、棉花(Cotton)及尼龍(Nylon; polyamides, PA)等纖維材料,現今對於回收聚對苯二甲酸乙二酯(PET)技術較為成熟,尼龍回收則以焚化回收其熱值,但過程中會排放大量二氧化碳加速全球暖化,若能有效地將廢紡織纖維轉化為具附加價值的產品,不僅能處理廢紡織纖維處理過程排放二氧化碳問題,亦可獲得高經濟價值之單體,進一步合成再生纖維以達高值化目的。 為解決廢紡織纖維污染及回收問題,應用水熱液化技術可將廢紡織纖維作為原料進行升級回收,通常需於高溫(280−450 oC)、高壓(7−30 MPa)進行,藉由水的性質劇烈變化,可快速轉化有機廢棄物為液態產物。本研究計畫旨在開發水熱液化系統以轉化尼龍織物為回收單體r-CPL,並應用於加工再製尼龍彈性纖維。首先將尼龍母粒或尼龍纖維胚布粉碎成粉末狀,並乾燥及過篩,將其放置於水熱液化系統中轉化成單體CPL,著重於探討不同反應溫度、壓力及反應時間等條件對尼龍轉為單體之影響,包括產率與單體之物化特性。 研究結果顯示當水熱液化之反應條件控制於溫度280 oC、反應壓力900 psi且反應時間為1小時,能有效轉化尼龍纖維胚布,經GC-MS進一步分析可確認主要產物為單體CPL(占比54.95%),可見水熱液化技術成功將尼龍轉為r-CPL之可行性。進一步將單體CPL、r-CPL與水反應聚合,通入氮氣及適當壓力進行開環反應,並加入聚醚胺、己二酸及交聯劑進行共聚以獲得尼龍彈性體,最後再製為尼龍彈性纖維。藉由NMR與FT-IR之鑑定可確認成功合成不同交聯劑比例的尼龍共聚彈性體;TGA熱重分析結果顯示尼龍共聚彈性體擁有優異的耐熱性(裂解溫度可達350 oC以上),此結果亦確保了材料在抽絲加工時可維持熱穩定性並成功進行熔融紡絲。
中文關鍵字 水熱液化技術、尼龍、廢紡織纖維、再生纖維、己內醯胺單體

基本資訊

專案計畫編號 EPA-112-XB13 經費年度 112 計畫經費 1300 千元
專案開始日期 2023/02/18 專案結束日期 2023/11/30 專案主持人 楊任軒
主辦單位 國環院氣候變遷研究中心 承辦人 溫淑媛 執行單位 國立臺北科技大學

成果下載

類型 檔名 檔案大小 說明
期末報告 EPA-112-XB13_期末_20231123_定稿.pdf 5MB 期末報告

Recycling of waste nylon textiles into high-value elastic fibers

英文摘要 The main components of textile materials include polyethylene terephthalate (PET), cotton, and nylon (polyamides, PA) fibers. Currently, the technology for recycling PET is more mature compared to nylon. Nylon recycling is primarily through incineration, which emits a significant amount of carbon dioxide and accelerates global warming. If waste textile fibers can be effectively converted into value-added monomers, it would not only address the issue of carbon dioxide emissions from waste textile fibers but also obtain monomers with economic value. These monomers can be further used to synthesize regenerated fibers, achieving a higher value. To address the pollution and recycling issues associated with waste textile fibers, hydrothermal liquefaction technology can be applied to upgrade and recycle these waste fibers. Typically, this process is conducted at high temperatures (280-450 °C) and high pressures (7-30 MPa). Through the changes in water properties during this process, organic waste can be rapidly converted into liquid products. This research aims to develop a hydrothermal liquefaction system to convert nylon textiles into a recycled-monomer caprolactam (r-CPL), which can be subsequent use in synthesizing regenerated elastic fibers. First, nylon pellets or greige will be pulverized into powder form using a grinder and then dried and sieved. Subsequently, hydrothermal liquefaction will be employed to convert the nylon powder into CPL monomer. The present study focused on investigating the influence of different reaction conditions, such as reaction temperature, pressure, and reaction time, on the conversion of nylon into monomers, including yield and the physicochemical properties of the monomers. The results indicated that under controlled hydrothermal liquefaction conditions at a temperature of 280 oC, pressure of 900 psi, and reaction time of 1 hr, nylon fibers can be effectively converted into liquid products. Further using GC-MS confirms that the main liquid product is CPL monomers (accounted for 54.95% in terms of peak area). This demonstrates the feasibility of using hydrothermal liquefaction technology to convert nylon into CPL monomer. Subsequently, the CPL monomer, r-CPL, and water are subjected to a ring-opening reaction for the synthesis of nylon elastomers. Polyether amine, adipic acid, and cross-linking agents are added for copolymerization to obtain nylon elastic copolymers. These copolymers are then processed into nylon elastic fibers. Identification through NMR and FT-IR confirmed the successful synthesis of nylon copolymers with different crosslinking agent ratios. Thermogravimetric (TGA) results demonstrated excellent heat resistance of the nylon copolymer (decomposition temperature exceeding 350 °C), ensuring thermal stability during the filament extraction process and its successful melting and spinning.
英文關鍵字 Hydrothermal liquefaction、Nylon、Waste textile fibers、Regenerated fibre、Caprolactam (CPL) monomer