環境資源報告成果查詢系統

電化學減碳技術效益提升研究計畫

中文摘要 由於台灣淨零碳排目標依照國際能源總署(IEA)、美國、歐盟等淨零排放能源路徑進行規劃,因此在2030年前以可行性減碳措施為規畫主軸,致力減少能源 使用與非能源使用的碳排放為主。且台灣於2050每年需以負碳排技術(--碳捕捉再利用及封存(CCUS))處理超過40.2百萬公噸的CO2,才能達到淨零碳排。目前現有之電化學進行CO2轉換之負碳技術仍面臨以下問題: 1. CO2轉換成CO之能耗過高,且陰極碳布之貴金屬觸媒成本過高且轉換效率低,因此無法滿足負碳需求。 2. CO2電化學轉換之陽極副產物(一般為氧氣)其產品價值過低,導致廠商無意使用。本研究致力於開發高效率的CO2轉化技術,目的實現淨負碳排放的目標。首先,在陰極觸媒的開發方面,利用獨創化學接枝和雙面異質親疏水處理技術,將觸媒以濕式製程沉積於氣體擴散碳布上,觸媒面積提升至400 cm2,成本相較傳統PVD製程降低20倍,並顯著提升CO2轉化為CO的效率至85%以上。針對陽極系統,開發替代性氧化半反應技術,將氧化電壓降低至1.35V以下,相比傳統氧化半反應,不僅大幅減少能耗,還能提高產物的經濟價值,從而克服電化學CO2轉化中的高能耗及低附加值問題,實現高效商業化應用。除此之外,本研究進一步完成CO2轉化模組的驗證,串聯觸媒面積100 cm²的模組,處理量可達1噸/年,並設計自動化設備,包括自動控制區、反應區及生成物儲存區,實現每小時處理114.3升CO2,實際產出97.6升CO,轉化率平均達85.42%。另外,報告內容涵蓋觸媒材料開發、表面處理、雙面異質技術應用及機台設計,並詳細介紹二氧化碳還原及陽極優化的技術細節,為CO2轉化技術開創了低能耗、高附加值的新方向,加速實現負碳排放技術的產業化。
中文關鍵字 電化學、二氧化碳轉換效率、陰陽極觸媒沉積反應率

基本資訊

專案計畫編號 經費年度 113 計畫經費 3150 千元
專案開始日期 2024/02/27 專案結束日期 2024/12/31 專案主持人 周敏傑
主辦單位 國環院氣候變遷研究中心 承辦人 郭育仁 執行單位 財團法人工業技術研究院

成果下載

類型 檔名 檔案大小 說明
期末報告 案號113FB011國環院電化學減碳技術效益提升研究計畫成果報告-定稿本.pdf 8MB

Study on the Enhancement of Electrochemical Carbon Reduction Technology

英文摘要 Taiwan's net-zero carbon emissions target has been planned in alignment with pathways outlined by the International Energy Agency (IEA), the United States, and the European Union. The primary focus before 2030 is on implementing feasible carbon reduction measures to minimize carbon emissions from both energy and non-energy sources. By 2050, Taiwan needs to process more than 40.2 million metric tons of CO2 annually to achieve net-zero carbon emissions. However, current electrochemical CO2 conversion technologies face significant challenges: (1) High energy consumption for converting CO2 to CO, combined with the high cost and low efficiency of precious metal catalysts used on cathode carbon cloth, fails to meet the demands of negative carbon technology. (2) The low value of by-products from CO2 electrochemical conversion reduces industry interest in adopting the technology. This project introduces an innovative low-energy CO2 conversion module, aiming to accelerate the industrialization of negative carbon technology. The research focuses on developing high-efficiency CO2 conversion techniques to achieve net negative carbon emissions. On the cathode side, unique chemical grafting and dual-faced hydrophilic-hydrophobic treatment techniques are employed, depositing catalysts on gas-diffusion carbon cloth using a wet process. This approach increases the catalyst area to 400 cm², reduces costs by 20 times compared to traditional PVD processes, and boosts CO2-to-CO conversion efficiency to over 85%. For the anode system, alternative oxidation half-reactions are developed to reduce oxidation voltage to below 1.35V. Compared to traditional oxidation half-reactions, this innovation significantly decreases energy consumption and enhances the economic value of the products, overcoming the limitations of high energy consumption and low product value in CO2 electrochemical conversion. Additionally, the research successfully validates a CO2 conversion module by connecting modules with catalyst areas of 100 cm², achieving a processing capacity of 1 ton/year. Automated equipment has also been designed, including automated control zones, reaction zones, and storage zones for both electrolyte and products. The system processes 114.3 liters of CO2 per hour, producing 97.6 liters of CO with an average conversion efficiency of 85.42%. The report encompasses catalyst material development, surface treatment, dual-faced hydrophilic-hydrophobic applications, and system design while detailing CO2 reduction and anode optimization techniques. This breakthrough paves the way for a low-energy, high-value-added CO2 conversion pathway, accelerating the industrialization of negative carbon emission technologies.
英文關鍵字 Electrochemistry, CO2 conversion efficiency, 、catalyst deposition reaction of anode and cathode