環境資源報告成果查詢系統

113年廢棄物非法棄置智慧圍籬推動計畫

中文摘要 非法棄置業者常利用交通之便,選擇跨縣市的快速道路,例如台61線和國1等主要幹道,將廢棄物清運至沿線的農牧用地進行非法棄置。為了管理廢棄物清運機具,環境部廢棄物清理法規定,要求清運廢棄物業者應裝置即時追蹤系統(GPS),然而稽查發現,許多不肖業者故意將GPS關機,而GPS系統功能之侷限無法證明業者關機之實,另外,一些業者還利用非列管車輛進行廢棄物清運,因為這些車輛的軌跡無法追蹤,進一步增加了非法棄置行為的難度。 為了應對這些挑戰,今年計畫目標包括:(一)智慧監控設備架設及維運、(二)建置及優化非法棄置智慧圍籬、(三)研析清運機具違規樣態,並建立勾稽邏輯及告警、(四)推動非法棄置智慧圍籬系統以及(五)協助本計畫推動各項行政業務。 本計畫執行的工作包含每月維運及巡檢11處既有點位,新增架設5處監控點位,並確保各點位準確度白天達75%,夜間達60%。為提高清運機具勾稽告警正確率,本計畫建立車牌辨識雙重驗證機制,使每處點位之精確度達95%。本系統今年也新增多項系統功能,包含即時影像串流功能、截錄大型車輛影片功能、優化圖台及車牌辨識清冊監控點位查詢功能、標註系統說明提醒文字功能、黑名單建立及告警功能,以及各項功能搭配環保局權限之設計,提升智慧圍籬車牌辨識資料之應用性並確保各使用單位在符合權限設計下運用本系統資料。本系統也持續將車牌辨識結果進行車型辨識,以聚焦監控清運機具,並透過物件辨識AI技術,建立車輛載運非廢棄物之判定邏輯,用以鎖定疑似載運廢棄物並有棄置風險之車輛。為加速擴展非法棄置智慧圍籬監控範圍,本計畫協助本署蒐集6個機關的車牌辨識資料,統計到今年11月底系統共有135處監控點位,並透過本系統建置的車牌辨識資料傳輸斷線回報功能,持續掌握全系統所有監控點位之車牌辨識資料傳輸情形。本計畫也透過GPS軌跡資料及國土用地分類資訊,建立高風險車輛於特定用地(如農牧、養殖等)異常停頓勾稽邏輯,並完成38件告警案件之條件驗證。本計畫的貢獻在於今年使許多軌跡異常的清運機具恢復正常,並透過各項資訊及勾稽方式,以避免棄置情形的擴大。
中文關鍵字 車牌辨識、事業廢棄物清運機、非法棄置。

基本資訊

專案計畫編號 經費年度 113 計畫經費 7950 千元
專案開始日期 2024/03/25 專案結束日期 2024/11/30 專案主持人 何平世
主辦單位 環管署環境執法組 承辦人 王安齊 執行單位 振興發科技有限公司

成果下載

類型 檔名 檔案大小 說明
期末報告 00_113年廢棄物非法棄置智慧圍籬推動計畫_期末報告內文_修正稿_公開版.pdf 0MB 本計畫公開版包含簡要版和詳細版摘要。

Project for AI inspection and the promoting of Audit Cooperation Network. (2024)

英文摘要 The illegal disposers take advantage of the convenient transportation, such as Provincial Highway 61 and National Highway No.1, and transports waste through cross-county and city express roads for disposal. To regulate waste removal operators, the Waste Disposal Act stipulates that waste removal vehicles must install a Global Positioning System (GPS) real-time tracking system. The practical experience has shown that many unscrupulous operators deliberately disable their GPS, and the limitations of the GPS system's functions cannot prove that the operators have turned it off. In addition, some operators also use unregulated vehicles for waste removal because the trajectories of these vehicles cannot be traced, increasing the difficulty of illegal dumping investigations. To address these challenges, the goal of this project involves: (1) installation and maintenance of the monitoring equipment. (2) construction and improvement of the AI geofencing system. (3) analyzing the removal vehicle abnormal transportation patterns to construct the tracking module and how the system notified the relevant inspectors. (4) Promoting the AI geofencing system to expand. (5) the administrative tasks and duties. This project involves the monthly maintenance and inspection of 11 existing monitoring points, as well as the installation of 5 new monitoring points. The goal is to ensure that the accuracy of each monitoring point reaches 75% during the day and 60% at night. To improve the accuracy of the alarm correlation, the project implements a dual verification mechanism for license plate recognition, ensuring that the accuracy of each monitoring point reaches 95%. This system has also introduced several new features this year, including: Real-time video streaming, Video clip of large vehicles, Optimized GIS and the searching function of the license plate recognition list, system’s description and text, Blacklist and alarm functions, Permission-based design tailored to the Environmental Protection Bureau to enhance the applicability of smart fence license plate recognition data, while ensuring that each user operates within the defined access rights. The system also continues to incorporate vehicle type recognition based on license plate data, focusing on monitoring waste collection vehicles. Using object recognition AI technology, the system identifies what materials the vehicles might transport to prevent the potential for illegal disposal. To accelerate the expansion of the AI geofencing system coverage, the project assists in collecting license plate recognition data from six agencies. As of the end of November, the system has a total of 135 monitoring points. Additionally, the system includes a data transmission disconnection reporting function to continuously monitor the transmission status of license plate recognition data across all monitoring points. The project also leverages GPS trajectory data and land-use classification information to establish a correlation logic for detecting high-risk vehicles that stop abnormally in specific land-use zones (such as agricultural, farming, or livestock areas). This has led to the verification of 38 alert cases. Through the integration of various system data and correlation methods, high-risk vehicles can be detected earlier, preventing illegal disposal incidents.
英文關鍵字 license plate recognition, industrial waste clearance and transport machinery, illegal dumping.