環境資源報告成果查詢系統

廢污油創新生物處理技術開發與油脂分解菌生態指標建立

中文摘要 將廢污油用生物處理取代原使用焚化或濃縮掩埋,免除對環境造成二次污染且較具經濟效益。油脂為具有高濃度COD廢棄物,若使用厭氧生物處理將COD轉化為氫氣或甲烷,回收生質能具有相當發展潛能,為創新並具前瞻性技術。然而油脂或長鏈脂肪酸對厭氧微生物具抑制性,在本研究中設計好氧流體化床(AFB),為一公噸槽體並使用下流式噴射流(JET)系統,油脂部分氧化,去除油脂對厭氧生物之抑制性後,後續經由第二、三段厭氧酸化槽及厭氧甲烷槽,回收生質能源。並引入分子生物檢測技術,作程序控制,或菌種定性分析。 好氧槽連續操作五個月,體積負荷為2 kg COD/m3-day,操作期間COD去除率約為40~60 %,油脂轉化率可達70~80%。隨著油脂持續好氧分解,推估揮發酸濃度最高峰為油脂達最高β氧化速率,後續將再配合厭氧能源化測試,驗證以揮發酸作為油脂部分氧化指標可行性。部分氧化沙拉油廢水及含油廚餘食品廢水具酸化產氫及甲烷化潛能,高濃度之油脂廢水對於厭氧菌有抑制作用,並發現厭氧菌亦有降解油脂的能力。分子生物方法DGGE成功分析各食品油脂廢水系統為生物多樣性。好氧醱酵槽模型場操作期間微生物生態有變遷現象,具有多樣性,尚待選殖鑑定菌種。T-RFLP也可應用於厭氧酸化及甲烷菌檢測,高濃度廚餘及食品油脂廢水甲烷化、酸化槽分析結果,可見系統中具有Clostridium (cluster I, II, III),而甲烷菌則有Methanosaetaceae及Methanosarcinaceae,為可生存於含高濃度油脂系統中菌群。 本研究所發展三段式生物程序可應用於任何食品產業及廚餘處理產業及廚餘處理產業之中油脂濃度廢水,目的在生質能源回收再利用。經由兩年模型場驗證後,將落實於食品廠之能源回收在利用工程化。台灣地區食品廠含油脂廢水至少30家,每家每日廢油產量2 m3油脂,相當生質能源產量3,200 m3CH4/day,已具能源回收再利用之規模。本技術也可應用於廚餘油脂生質能源化,至少10處廚餘厭氧發酵廠。第三推廣產業為生技公司,可技術移轉將油解菌商品化。首創分子生物檢測技術為廢污油生物處理程序之監測系統,為國內外首創技術,絕對具有國際競爭力,可歸屬技術領域為分生監測環保生物技術(Molecular Biomonitoring Process Technology,MBPT)。
中文關鍵字 油脂,好氧醱酵,油脂分解菌

基本資訊

專案計畫編號 EPA-94-U1U1-04-006 經費年度 094 計畫經費 1650 千元
專案開始日期 2005/03/04 專案結束日期 2005/12/31 專案主持人 鄭幸雄
主辦單位 永續發展室(停用) 承辦人 執行單位 國立成功大學

成果下載

類型 檔名 檔案大小 說明
期末報告 0000122394.pdf 0MB [期末報告]公開版

Development of Innovatory Biotreatment Process for Waste Oil and Grease and Ecology Index of Degrading Bacteria

英文摘要 Oil and grease wastewater were always treated with acidification and dissolved air flotation process. The concentrated greasy sludge should be separated and disposed to the sanitary landfill or combustion. This secondary oil treatment process attributed to high cost and the residual pollution. In this study, an innovative design of aerobic fluidized bed (AFB) bioreactor, was achieved with a pilot plant of one cubic meter volume and a down-flow jet aeration system. The volumetric loading rate of 2 kgCOD/m3-day and the oil inflow concentration of 600-1,000 mg/L associated with 2,000-3,000 mg/L of COD was applied to the first stage of AFB reactor. Supplement of diatomaceous earth carrier adsorption enhanced the oil attachment and biodegradation with partial oxidation. 0.19 to 0.22 kg oil/grease/m3-day was attained with good removal efficiency of 70 to 80% of oil and grease. The residual organic substrate was utilized by the acidogene associated with hydrogen production in the second state. Then the methanogene degrade the volatile fatty acids to produce methane in the third stage of anaerobic process. Two molecular biomonitorings of DGGE and T-RFLP methodologies were established for the ecological indicates of these three-phase microorganisms. With the long-term biomonitorings data base, the integrate bioprocess for oil and grease wastewater treatment could be controlled for the performance optimization. This wholesome biotechnology will be transferred to food industry as a Molecular Biomoniforing Process Technology (MBPT).
英文關鍵字 oil and grease,aerobic fermentation,oil and grease degrading bacteria