環境資源報告成果查詢系統

飲用水水源及水質中產毒藻種及藻類毒素之研究(第二年)

中文摘要 本計畫目的在於了解國內主要地面水水源以及淨水廠藻類與毒素流佈狀況,並收集及解析先進國家及組織之管制標準及策略,以做為建立國內藻類及毒素流佈資料、相關標準與管制策略等之參考。本年度計畫成果包括建立9種藻類毒素化學分析方法、新型柱孢藻分子生物技術建立、水源流佈調查及長期數據解析、三種類型淨水程序調查及長期數據解析、藻華及代謝物緊急應變案例探討、以及我國藍綠菌及毒素管制之執行建議等。 本年度計畫共完成樣品155件,其中水庫表水樣品51件、水廠原水樣品12件、清水樣品18件、水廠程序水樣品62件、配水管網樣品12件。表水除藻華外微囊藻毒素濃度介於N.D. -0.9 g/L、原水介於N.D. -0.5 g/L、清水與配水管網樣品均均小於 0.1 g/L。 在分析部份,計畫中改良固相萃取技術修正,並針對液相層析質譜儀進行一系列儀器分析參數的最佳化調整,可以一次定性定量分析九種常見毒素,包括六種微囊藻毒素(Microcystin-LR, RR, YR, LW, LF, LA)及節球藻毒素(Nodularin)、魚腥藻毒素(Anatoxin-a)及柱孢藻毒素(Cylindrospermopsin)。其中除柱孢藻毒素偵測極限為0.2 g/L外,其餘均在0.01 g/L附近。長期監測結果顯示,微囊藻毒素及2-MIB臭味物質濃度隨著季節有變化之趨勢,在較溫暖之季節,其濃度值也相對較高。 針對T水庫進行各水質參數相關性分析,在主要水質參數對中,微囊藻毒素與微囊藻數目和葉綠素-a成顯著性正相關。葉綠素-a與數個水質參數(微囊藻毒素、微囊藻數、臭味物質β-cyclocitral)均成顯著性正相關關係。初步推估T水庫中微囊藻藻細胞的平均產毒當量約為0.011 pg/cell,實驗室微囊藻之葉綠素當量約為0.36 pg/cell左右,兩者均可用於初步推估微囊藻及毒素濃度推估之參考,以減少分析藻毒成本負擔。 本計畫過去多次監測結果顯示,傳統淨水場毒素去除效果均約在40-92%左右,具慢濾之淨水場去除效率約在61-90%間,高級淨水場毒素濃度原本即低,去除率約有53-96%。T淨水場出水用戶兩次採樣分析12個樣品結果顯示,其各用戶微囊藻毒素已經相當低,水樣中亦發現有微量藍綠細菌存在於水體中,但是無微囊藻細胞之發現。 T水庫及J水庫原水本年度測出柱孢藻毒素,處理程序能有效去除柱孢藻毒素,清水濃度低於國際建議值以下。本年度針對J水庫及T水庫進行藍綠菌種分佈以及新型柱孢藻分子生物技術研究,發現有在NCBI Genbank 中尚未發表之藍綠菌種。Real Time PCR已解析出各種類型柱孢藻之分佈,後續可作為產毒與否及定量依據。 研究中並針對國內外案例,進行應變解析,國內以T水庫為例、國外以澳洲兩座水庫為例,針對水庫管理、水處理、後續飲用水應變等,進行應變案例探討。計畫中並協助環保署舉辦“飲用水水源中常見有毒藍綠菌與毒素管理與監控技術”研討會,協助環保署訓練水庫、水場及環保相關主管人員。研討會主要內容包括有毒藍綠細菌之監測、控制、及管理技術,並進行實作,以提升相關人員之技術操作與應變之能力。最後本計畫針對我國藍綠菌管理架構,參酌國內外現況,依水庫風險評估、水庫監測計畫研擬與實施、毒素監測結果解析與應變、及水中毒素淨化處理等,研擬出相關各項工作項目、配合機關、及預期期程。
中文關鍵字 藍綠細菌;微囊藻;微囊藻毒素;藻毒;飲用水;水源

基本資訊

專案計畫編號 EPA-95-U1U1-02-101 經費年度 095 計畫經費 1318 千元
專案開始日期 2006/03/06 專案結束日期 2006/12/31 專案主持人 林財富
主辦單位 環管處 承辦人 執行單位 林財富等

成果下載

類型 檔名 檔案大小 說明
期末報告 EPA-95-U1U1-02-101-public.pdf 0MB [期末報告]公開版

Investigation of Cyanobacteria and Cyanotoxins in Drinking Water Systems

英文摘要 The objectives of this project include (1) to understand the presence of toxic cyanobacteria and cyanotoxins in the source water and finished water in Taiwan, (2) to evaluate the management strategy of international organization and other countries for the control of cyanotoxins in drinking water, and (3) to help the establishment of national standards and management strategies for cyanotoxins in drinking water of Taiwan. In this year, 155 water samples were collected and analyzed in 6 major drinking water reservoirs and associated treatment plants. A solid-phase extraction (SPE) concentration technique followed by liquid chromatograph-mass spectrometer (LC-MS) was used for the quantification of six microcystin congeners (LR, RR, YR, LA, LW, and LF), anatoxin-a, nodularin, and cylindrospermopsin. The concentrations of microcystins were between N.D. -0.9 g/L in surface water samples, were between N.D. -0.5 g/L in raw water samples, and were all < 0.1g/L for finished water samples. A correlation between major cyanobacteria and their metabolites was conducted for the samples collected from T Reservoir. Among the parameters analyzed, chlorophyll-a concentration is proportional to microcystins concentration, microcystis cell concentration, and β-cyclocitral concentration, indicating that chlorophyll-a may be a good indicator for the estimation of the algal metabolites in the reservoir. For the treatment efficiency in the waterworks, 40-92% of microcystins removal efficiency were observed for the waterworks with conventional treatment processes, 61-92% were for the conventional waterworks with floatation and slow sand filtration units, and around 53 to 96% were for the advanced waterworks. Cylindrospermopsin and potential producers, cylindrospermopsis, were detected in two reservoirs, T and J. The concentrations of cylindrospermopsin in the surface water were as much as several g/L, and however, those in the finished water were much lower at < 0.5 g/L. New strains of cylindrospermopsis were detected using Real Time PCR and other biotechnical methods. The linkage between toxin production and cylindrospermopsis strains in the two reservoirs needs to be further explored. For the management of cyanobacteria and cyanotoxins in the drinking water systems, three cyanobacteria bloom episodes, including one domestic reservoir and two Australian reservoirs, were reported and analyzed. In addition, a workshop for the identification of toxic cyanobacteria in drinking water was held at National Cheng Kung University. Finally, a framework and time table of implementation was suggested for the management of cyanobacteria and cyanotoxins in drinking water systems for different responsible agencies.
英文關鍵字 Cyanobacteria, microcystis, microcystin, algal toxin, drinking water, raw water