以燃料電池結合光觸媒反應裝置進行光電廠IPA廢氣之熱值回收再利用
中文摘要 | 本計畫所擬 SOFC 燃料電池整合光觸媒氧化系統之處理技術可同時兼顧IPA 有機揮發物氧化分解及能源再生使用;基於能量轉換的效率評估,SOFC對電力的轉換率可達 60%以上,相較於其他熱值回收系統,可謂是效率非常高之化學能-電能轉換效率。而本計畫所採用之 SOFC模組乃是開發以平面型三明治疊層結構型式(Sandwiched-stack planar structure)之固態氧化物燃料電池的結構觀念為主,主要利用稀有金屬觸媒作為電極,搭配網印技術進行模組化單電池之製作與分析。其中主要製造技術乃以陶瓷材料做為基底基板,並利用網版印刷技術與高溫燒結製程分別將陽極層、電解質層、陰極層與電流收集極(current collectors)依序印刷於陶瓷基板上。另外分別探討燒結溫度、印刷導線、觸媒比例等配方參數對於單電池模組的表面特性影響,從電子顯微鏡的佐證可進一步推論 SOFC 之最佳製作參數,並佐以 SOFC 反應器設計之要求,如操作溫度,氣體輸送特性等因子,最後須能完成可於高溫條件下(800℃),將含氫原子之化合物作裂解,並產生電流之完整裝置。 透過 SOFC 反應後,其 VOCs 尾氣處理部份則利用光觸媒反應器設計概念與氣相 IPA 有機揮發氣體之光催化分解測試加以結合,進行尾氣處理之可行性評估。從實驗結果得知,光反應器之處理效果主要受到氣體處理流量、含氧濃度、光輸出強度以及光反應器設計幾何形狀等因素所影響。現階段所開發設計之光反應器主要針對較低濃度之 IPA 揮發性有機物有較佳之處理效果,推測試觸媒表面反應面積受限,在高 IPA 濃度時的處理效率較低。一系列開發之新式模組化之光反應器,分別為小型陣列式光纖反應器以及新型陣列式光反應器,在應用於與燃料電池的連接部份相較於傳統實驗設計上,具有較多的便利性且部分 SOFC 能量亦可供與光能產生並作為光催化反應之用;再加上模組反應器之高催化能力,在此 IPA 廢氣熱值回收再利用系統中扮演著重要的角色。 固態氧化物燃料電池測試平台之組裝是為以利用不鏽鋼材質並自行設計之燃料電池平台;以固定燃料電池操作溫度 600℃與固定氫氣與 IPA氣體之總流量 100 sccm,開路電壓(VOC)與短路電流(ISC)隨著氫氣流量增加而上升,在氫氣流量100 sccm條件下可達到8.7 V與1.19 A 。而當添加IPA氣體約40 sccm以內於總固定燃料氣體流量(IPA:40sccm 與氫氣:60 sccm)時可發現開路電壓(VOC)與短路電流(ISC)仍保持 8.35 V與 1.12 A的高度發電效率,亦即表示通入高濃度 IPA 氣體(少於 40sccm)先行進入固態氧化物燃料電池作為燃料氣體仍可得到良好的發電效率,同時亦可達成處理高濃度 IPA氣體的預期目標。 | ||
---|---|---|---|
中文關鍵字 | 二氧化鈦, 揮發性有機物, 固態氧化物燃料電池, 異丙醇 |
基本資訊
專案計畫編號 | EPA-96-04-0-08 | 經費年度 | 096 | 計畫經費 | 3479 千元 |
---|---|---|---|---|---|
專案開始日期 | 2007/11/19 | 專案結束日期 | 2008/09/18 | 專案主持人 | 顧洋 |
主辦單位 | 永續發展室(停用) | 承辦人 | 林燕柔 | 執行單位 | 立曄股份有限公司 |
成果下載
類型 | 檔名 | 檔案大小 | 說明 |
---|---|---|---|
期末報告 | 96環保科技育成中心計畫期末報告-基本資料表.pdf | 0MB | [期末報告]公開版 |
Reclamation and recycling of heat-content from TFT-LCD wasted-IPA by co-system combined solid oxide fuel cell (SOFC) technology with photocatalytic oxidation system
英文摘要 | The co-system combined solid oxide fuel cell (SOFC) technology with photocatalytic oxidation system could provide the decomposition of isopropanol and energy reclamation of energy. The high-efficiency SOFC in the conversion of chemical and electrical energy could achieve as high as more than 60% in electricity conversion comparing with other recycling systems of heat-content. Besides, the SOFC module was fabricated by the concept of sandwiched-stack planar structure. Single cell was prepared by screen printing technology and rare materials as electrodes were also used. The ceramic materials were used as substrates, and then the anodic layer, electrolyte layer, cathodic layer and current collectors were subseauently screen-printed on substrates in turn. The effects on materials characterizations of single cell such as optimum preparing conditions, sintering temperature, wirings and catalysts could be proofed by scanning electron microscopy (SEM). Besides, the operating conditions of SOFC reactor were also controlled by the inlet gas flow rates, ratios of gases and the operation temperatures of reactor. Finally, the complete electricity generating system could be finished and operated in high temperature surrounding by the hydrogen compound pyrolysis. After reacting in the SOFC, the degradation of outlet VOCs gases was estimated from the design of photocatalytic reactor and the photocatalytic decomposition of gaseous isopropanol. The pollutant removal efficiency of photoreactor was affected by the inlet gas flow rates, oxygen concentrations, light intensity and the configuration of photoreactor. A series of new types photoreactor module, optical fiber photoreactor and array-photocatalytic reactor, were designed in order to get a higher decomposition rate of VOCs and applied to connect behind the SOFC system which provided some electricity to the photoreactor for photocatalytic process. The high photocatalytic activity of photoreactor module played the important role of this heat-content recycling system. The test platform of solid oxide fuel cell which was designed in the process of this project was fabricated by stainless steel. The open circuit voltage (Voc) and short circuit current (Isc) were increased with the increasing hydrogen flow rate at a constant operating temperature (600℃) and total mixing flow rate of hydrogen and IPA (100 sccm). There were 8.35 V Voc and 1.12 A Isc when the flow rate of hydrogen was 100 sccm. In addition, the Voc and Isc could be kept high generating efficiency of electricity under H2(60sccm)/IPA(40sccm) flow. It was meant that high concentration IPA (less than 40sccm) could both get high generating efficiency of electricity and decompose the high concentration IPA. | ||
---|---|---|---|
英文關鍵字 | Titanium dioxide, Volatile organic compounds, Solid oxide fuel cell, Isopropanol |