環境資源報告成果查詢系統

以生態工法淨化水庫水質控制優養化研究計畫(2)

中文摘要 本研究「以生態工法淨化水庫水質控制優養化研究計畫(2)-以生物鏈方式淨化水庫水質」為第一年之延續計畫,主要利用生物鏈方式來淨化水庫水質。計畫目標為收集分析資料,提出國內外水庫以生物鏈方式淨化水庫水質之作法、研究結果及生物鏈中生物之關聯性。同時,選擇一座水庫調查生態,提出以生物鏈方式淨化水庫中氮磷水質項目之評估結果及相關工作。 本計畫蒐集和分析國內外有關利用生物及相關方法於控制水質優養化,並歸納和陳述一些可供削減水庫水質優養化程度之策略,可供國內之參考。其中包括,國內、澳洲、美國、西班牙所使用的人工濕地去除營養鹽,日本及以色列利用水生植物吸收氮磷物質,印度與加拿大使用藻類吸收水中營養鹽,印度使用魚類攝食藻類。還有歐美許多國家,如巴西、挪威、德國、瑞士、瑞典等,利用鯉科魚類捕撈減量的方式,來達到水庫優養化的控制。 依卡爾森指數與藻類優養指數來看,新山水庫已屬於一輕度優養化之水庫;腐水度指數亦顯示其以受相當程度的有機污染。由今年3次採樣調查分析結果發現,會造成新山水庫優養化的主要原因是由於磷與氮的大量輸入。尤其是當磷的輸入量越高時,越容易促使藍綠藻類的生長,甚而造成微囊藻藻華的現象,而直接或間接地影響了物種組成或食物鏈的結構。由今年三次的調查亦得知,新山水庫藻類群落仍以藍綠藻類為最優勢。浮游動物方面,各採樣點都是以甲殼類的水蚤為最多,甲殼類出現最多的為橈腳類及枝角類,其數量在不同的地點可分別達每噸水有2002、1940及123隻,若再包括其egg、nauplius及copepodite,則數量更是豐富。關於水生昆蟲與底棲生物部分,綜合三次的採樣,即知其季節性變化不大,兩者的生物相都很貧瘠。由魚介類的組成調查結果可知,新山水庫是以大眼華鯿、餐條、吳郭魚、大肚魚、蝦虎及石田螺為最常見。這些魚介類中有專吃水草的草魚,偏好浮游藻類的大眼華鳊、豆仔魚等,有專吃微細動物的幼苗及體型較小的大肚魚、蝦虎,有喜好浮游動物的鳙及餐條,有專吃小魚小蝦的肉食性魚類如泰國鱧及鰻魚,有雜食性的吳郭魚,有刮食附於表面的石田螺等,充分顯現一個較為穩定、多樣且成熟的水生生態系。觀察溫度及溶氧等濃度曲線圖可以看出新山水庫大約在4月份開始逐漸形成分層,至10月份之後水體又漸漸混合,8、9月為新山水庫分層最明顯的時期,且在分層明顯時新山水庫底部溶氧幾乎低於2 mg/L。溶氧低的情形除了造成營養鹽累積,間接造成每年3、4月藻類濃度的高峰,亦對於浮游動物及底棲生物之生存造成威脅,是不容忽視的問題。 以捕撈鯉科魚類的方式進行水質改善,已在歐、美國家得到成功的驗證。當鯉科魚類減少後,浮游動物便隨之增加,藻類被取食的效率提高。底泥所受干擾亦因鯉科魚類的移除而減少,營養鹽溶出減緩,再懸浮現象降低,水體能見度提高,水生植物可以大量生長與藻類競爭營養鹽或釋放排它物質,因而水質漸獲改善。在研究魚類相及胃內容物的分析,得知水庫內可適度放養黑鰱及草魚甚或淡水珍珠貝,亦可生產珍珠增加收益。而新山水庫的主要汙染係來自基隆河,由八堵抽水站不定時自基隆河抽取輸送至水庫。故要削減此污染,可針對進水以人工濕地的方式進行營養鹽去除後,再輸入至水庫之中。預計可利用構築人工濕地方式,栽植挺水性或浮水性水生植物、微生物分解及底泥吸收等,來減少進流水之氮、磷等營養鹽和污染物。而水庫中的營養鹽、邊坡的陸源性輸入、底泥釋放及魚類代謝等,可利用箱網養殖和/或浮島栽種水生植物、及貝類捕撈等方式來削減。至於增加水庫底部溶氧但盡量不造成底部擾動的方法,可以使用深層曝氣循環機,使底層水的溶氧增加,保持好氧狀況,以抑制底泥營養鹽(尤其是磷)的溶出,但不破壞湖水的分層。 本年度計畫以3個模式進行水庫模擬,包含Vollenweider零維總磷質量平衡模式、WASP水庫水質模式,以及Ecopath生態模式等三種模式。由Vollenweider與WASP模擬水質的結果可發現,模擬值與實測兩者有相同的趨勢,顯示此模式適用於新山水庫,生態模式Ecopath模擬得知新山水庫是一個相對接近成熟的生態系統,水庫中族群變化相對的穩定。本研究進一步將Ecopath結合WASP模式,模擬放置珍珠貝於水庫中,利用其攝食藻類的特性,來改善新山水庫的水質狀況之效果。
中文關鍵字 生態工法、水庫水質、優養化

基本資訊

專案計畫編號 EPA-95-U1G1-02-102 經費年度 095 計畫經費 2440 千元
專案開始日期 2006/04/01 專案結束日期 2006/12/31 專案主持人 吳俊宗
主辦單位 水保處 承辦人 范國政 執行單位 國立臺灣大學

成果下載

類型 檔名 檔案大小 說明
期末報告 KM-99977752-2.pdf 8MB [期末報告]公開完整版

Project of eutrophication control for reservoir water quality by ecological engineering

英文摘要 This project was a continuity of ‘‘Eutrophication control for reservoir water quality by ecological engineering”, focusing on the topic of improving the water quality by means of food chain technology. Following a review of the literatures, various methodologies, results, limitations and conditions for employment the food chain technology were summarized. For practicing, the Hsin-shan water reservoir was chosen as the experimental site. Over this year, sampling in three seasons, were done to collect the data including physico-chemical variables of water quality, compositions and structures of planktons, benthos, invertebrates and fishes in the water reservoir. The results showed that this reservoir was in meso- to eutrophic state of -mesosaprobity indicated by phytoplankton as well as zooplankton. Various forms of pollutants originated from Keeling River were the main factors resulting in the eutrophication of this water reservoir. Phosphate was identified as the key nutrient related to the growth of the primary producer. In zooplankton assemblages, Cladocera such as Daphania, Bosmin, and Diaphaosoma were the most dominant genus over others. Of Crustacea, both the Cladocera and Copepoda dominated, up to 2002, 1940, and 123 at three different localities. There was little change in the amount and composition of insects and benthos, suggesting that a low density and low seasonal succession of them. The fish assemblages were composed by some common species such as Sinibrama macrops, Hemiculter leucisculus, Oreochromis sp., Gambusia affinis, and Rhiogobius spp. Of shellfish, Sinotaia quadrata dominated. The feeding of fishes was investigated from the kind of ingested food in stomach. All of the data suggested that this reservoir was a mature ecosystem. In late summer, from August to October, thermo-stratification occurred. This has resulted in oxygen deficiency with dissolved oxygen lower than 2 mg/L in hypolimnic layer. The Microcystis-blooming in spring was considered to be a result of increase in nutrients owing to the upwelling from the anaerobic hypolimnion occurred in late-winter, March to April. In addition, the anaerobic environment was disadvantageous for survival of zooplankton as well as benthos. Some strategies of bio-manipulation, such as wet land, submerged macrophytes, control of herbivorous fish, and shellfish-culturing, were suggested as the applicable technologies to this water reservoir. Particularly, fishes such as Ctenopharyngodon idellus and shellfish such as Anodonta woodiana, were recommended as the potential culturing organisms for removal of algae with pearl as by-product in the future. The wetland was suggested as the potential methods to remove both the phosphorus- and nitrogen- containing pollutants originated from Keelung river. The runoff from the surrounding of the reservoir can be lowered by floating island vegetated with water plants and culturing of shellfish. Furthermore, moderate hypolimnic aeration without destroying the thermo-stratification was suggested to enhance the dissolved oxygen of hypolimnion and to inhibit the release of nutrients, particularly phosphate. The simulation of the variables of water quality by Vollenweider and WASP water quality models gave the similar tendency for both the measured and simulated data, suggesting that either model was applicable to this aquatic environment. The simulation by Ecopath model indicated that the aquatic ecosystem in this water reservoir was in mature status. Basing on the combined model of WASP-Ecopath, it was attempted to estimate the amount of mussels required for improving the water quality of this water reservoir.
英文關鍵字 Ecological Engineering, Reservoir Water Quality, Eutrophication