環境資源報告成果查詢系統

飲用水水源及水質中產毒藻種及藻類毒素之研究(第三年)

中文摘要 本計畫目的在於了解國內主要地面水水源以及淨水廠藻類與毒素流佈狀況,並收集及解析先進國家及組織之管制標準及策略,以做為建立國內藻類及毒素流佈資料、相關標準與管制策略等之參考。三年成果包括分析技術建立與應用、環境樣品調查與解析、淨水程序調查及數據解析、我國藍綠菌及毒素管制之建議、藻華及代謝物緊急應變案例探討、藍綠菌與毒素管理與監控人員訓練等。 在分析方法建立部分,本研究成功建立固相萃取法,並應用內標的方法,配合液相層析質譜儀或光陣列檢測器,可以一次定性定量十種的毒素,包括Microcystin-LR、-RR、-YR、-LW、-LF、-LA(六種微囊藻毒素)及Nodularin(節球藻毒素)、Anatoxin-a(魚腥藻毒素)及Cylindrospermopsin(柱孢藻毒素)共、及BMAA毒素,並成功應用於環境樣品監測。其中除柱孢藻毒素偵測極限為0.1-0.2 g/L外,其餘均在0.01 g/L附近 在微囊藻毒素資料庫建立部分,本計畫三年共完成樣品612件,其中水庫表水樣品172件、水廠原水樣品83件、清水樣品70件、水廠程序水樣品245件、配水管網樣品42件。表水除T水庫藻華外微囊藻毒素濃度介於N.D. -1.20 g/L、原水介於N.D. -0.47g/L、清水與配水管網樣品均小於 0.1 g/L。 環境因子對於水中毒素之影響部分,A、B兩水庫長期監測結果顯示,microcystins毒素及2-MIB臭味物質濃度隨著季節有變化之趨勢,在較溫暖之季節,其濃度值也相對較高。T水庫各水質參數相關性分析結果顯示,微囊藻毒素與微囊藻數目和葉綠素-a成顯著性正相關, T水庫歷次原水樣品微囊藻數與微囊藻毒素濃度之相關性,可以初步推估T水庫中微囊藻藻細胞的平均產毒當量約為0.011 pg/cell,此項數值與銅綠微囊藻之產毒當量文獻值比較(0.2 pg/cell)約為20分之1左右。此外,T水庫歷年2-6月(96年延長至9月)幾乎經常性有藻粒斑點或藻華,藻粒斑點濃度在105 cells/ml附近,藻華主要發生在下風處,發生藻華時該處水中微囊藻數 在 106-107 cells/ml。在水體微囊藻數大於105 cells/ml時,微囊藻毒素濃度超過1 g/L機會大增。除T水庫外,本年度(2007)亦發現D、及L水庫,各有一件樣品濃度亦達0.7g/L以上。此外,今年度(2007)T水庫水中2-MIB濃度在各監測水庫最高,多次量測結果均超過10 ng/L,R、C、L、J、B水庫濃度部分時間也大於10 ng/L。 淨水廠處理效率部分,三年監測結果顯示,傳統淨水場毒素去除效果平均約在32-65%左右,具慢濾之淨水場去除效率約在48-100%間,高級淨水場去除效果可以達53-96%,平均為75%。相對於毒素,2-MIB去除效果在傳統A則非常低,全部低於3成,因為MIB不易被一般物化處理去除,傳統B具慢濾程序,處理效率遠較傳統A高,可以達6-9成。高級淨水廠則可以100%去除。在藻類去除效果上,三種類型水廠均可以達90%以上。 配水管網採樣結果顯示,42個樣品微囊藻毒素濃度均遠低於WHO指引值,但是柱孢藻毒素濃度後續則應加強監測。此外,在部分樣品中採樣中則發現夏季時,臭味物質濃度仍高於民眾嗅覺閾值。 在分子生物技術部分,本研究已建立PCR、DGGE、BioMarker、Real Time PCR等分子生物方法,可以應用於偵測現場水樣中毒性藻體基因定量及其族群變化。本研究選擇不同產毒藻種之特異性或功能段之基因區間,做為引子設計的依據,藉由引子與探針的專一性,更有效率地將各產毒藻種之基因濃度定量出來。結果成功應用於金門太湖、榮湖、陽明湖、牡丹水庫及太湖淨水廠與榮湖淨水廠,初步結果顯示可以有效的定量產微囊藻毒藻種之細胞濃度。 在法規與應變部分,本計畫已收集、並解析包括十餘個主要單位及國家,在藻類毒素及藍綠細菌之管制及應變方法,並考量國內外狀況,提出國內水庫及水廠藍綠菌及毒素風險評估,考慮藍綠菌藻華及毒素、葉綠素、總磷等主要水質因子,將主要水庫水廠分成低中高三個藍綠菌及毒素風險等級,並完成水庫目視監測指引、及藍綠菌及毒素採樣指引,可供後續參考。研究中並彙整分析澳、法、紐、法等各國案例,然後以國內T水庫為例,針對水庫管理、水處理、後續飲用水應變等,進行應變案例探討探討,並就國內一般性之水庫藻華應變提出應變架構建議。 在人員訓練部分,本計畫在三個年度中,共舉辦三次 “藍綠菌與毒素管理與監控技術”研討會,協助環保署訓練水庫、水場及環保相關主管人員。研討會主要內容包括有毒藍綠細菌之監測、控制、及管理技術,並進行實作,以提升相關人員之技術操作與應變之能力,三次累計共有超過240人參加。
中文關鍵字 藍綠細菌,微囊藻毒素,節球藻毒素,魚腥藻毒素,柱孢藻毒素

基本資訊

專案計畫編號 EPA-96-U1J1-02-101 經費年度 096 計畫經費 1800 千元
專案開始日期 2007/03/02 專案結束日期 2007/12/31 專案主持人 林財富
主辦單位 環管處 承辦人 施雯玲 執行單位 財團人成大研究發展基金會

成果下載

類型 檔名 檔案大小 說明
期末報告 Cyanotoxins(3rd)_outside.pdf 16MB [期末報告]公開完整版

Investigation of Cyanobacteria and Cyanotoxins in Drinking Water Systems

英文摘要 The objectives of this project include (1) to understand the presence of toxic cyanobacteria and cyanotoxins in the source water and finished water in Taiwan, (2) to evaluate the management strategy of international organization and other countries for the control of cyanotoxins in drinking water, and (3) to help the establishment of national management strategies for cyanotoxins in drinking water of Taiwan. The outcomes of this three-ear project include establishment of analytical techniques, monitoring of toxins in drinking water systems and analysis of the data, training of reservoir and water utilities personnel, and proposed national framework for the management of cyanobacteria and cyanotoxins in drinking water systems. In the project, 612 water samples were collected and analyzed in 6 major drinking water reservoirs and associated treatment plants. A solid-phase extraction (SPE) concentration technique followed by liquid chromatograph-mass spectrometer (LC-MS) was used for the quantification of six microcystin congeners (LR, RR, YR, LA, LW, and LF), anatoxin-a, nodularin, cylindrospermopsin, and BMAA. The concentrations of microcystins were between N.D. -1.2 g/L in surface water samples, were between N.D. -0.47 g/L in raw water samples, and were all < 0.1g/L for finished water samples. A correlation between major cyanobacteria and their metabolites was conducted for the samples collected from A, B, and T Reservoir. The data from Reservoirs A and B indicated that the concentration of microcystins and that of 2-MIB changed with weather, with higher concentration at warmer seasons. The data from Reservoir T suggested that chlorophyll-a concentration is proportional to microcystins concentration, Microcystis cell concentration, and β-cyclocitral concentration, indicating that chlorophyll-a may be a good indicator for the estimation of the algal metabolites in the reservoir. In addition, when the cell number > 105 cells/ml, the microcystins concentration would be very like to exceed 1 g/L. For the treatment efficiency in the waterworks, 32-65% in average of microcystins removal efficiency were observed for the waterworks with conventional treatment processes, 48-100% were for the conventional waterworks with floatation and slow sand filtration units, and around 53 to 96% were for the advanced waterworks. For all the 42 samples collected from distribution systems, all the concentrations of microcystins were smaller that 0.1 g/L. However, both cylindrospermopsin and 2-MIB need to be further investigated. Real time PCR and other molecular techniques suggested that new strains of Cylindrospermopsis were detected in T and J reservoirs. In addition, Microcystis cells were present in the distribution systems at low level. For the management of cyanobacteria and cyanotoxins in the drinking water systems, four cyanobacteria bloom episodes, including one domestic reservoir, two Australian reservoirs and one New Zealand watershed, were reported and analyzed. In addition, three workshops for the identification of toxic cyanobacteria in drinking water was held, with more than 240 people trained in the workshops. Finally, a national framework was suggested for the management of cyanobacteria and cyanotoxins in drinking water systems for different responsible agencies.
英文關鍵字 Cyanobacteria,Microcystin,Nodularin,Anatoxin-a,Cylindrospermopsin